本文整理了Java中weka.classifiers.bayes.NaiveBayes.<init>()
方法的一些代码示例,展示了NaiveBayes.<init>()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。NaiveBayes.<init>()
方法的具体详情如下:
包路径:weka.classifiers.bayes.NaiveBayes
类名称:NaiveBayes
方法名:<init>
暂无
代码示例来源:origin: stackoverflow.com
Classifier cModel = (Classifier)new NaiveBayes();
cModel.buildClassifier(isTrainingSet);
weka.core.SerializationHelper.write("/some/where/nBayes.model", cModel);
Classifier cls = (Classifier) weka.core.SerializationHelper.read("/some/where/nBayes.model");
// Test the model
Evaluation eTest = new Evaluation(isTrainingSet);
eTest.evaluateModel(cls, isTrainingSet);
代码示例来源:origin: nz.ac.waikato.cms.weka/distributedWekaBase
public AggregateableFilteredClassifier() {
m_Classifier = new NaiveBayes();
}
代码示例来源:origin: nz.ac.waikato.cms.weka/weka-stable
/**
* Returns the Capabilities of this filter.
*
* @return the capabilities of this object
* @see Capabilities
*/
@Override
public Capabilities getCapabilities() {
return new NaiveBayes().getCapabilities();
}
代码示例来源:origin: nz.ac.waikato.cms.weka/weka-stable
/**
* Main method for testing this class.
*
* @param argv the options
*/
public static void main(String[] argv) {
runClassifier(new NaiveBayes(), argv);
}
}
代码示例来源:origin: stackoverflow.com
Classifier Mode; // a parent class
if(alg.equals("DecisionStump")) {
Mode = new DecisionStump();
} else if(alg.equals("NaiveBayes")) {
Mode = new NaiveBayes();
}
代码示例来源:origin: Waikato/weka-trunk
/**
* Returns the Capabilities of this filter.
*
* @return the capabilities of this object
* @see Capabilities
*/
@Override
public Capabilities getCapabilities() {
return new NaiveBayes().getCapabilities();
}
代码示例来源:origin: Waikato/weka-trunk
/**
* Main method for testing this class.
*
* @param argv the options
*/
public static void main(String[] argv) {
runClassifier(new NaiveBayes(), argv);
}
}
代码示例来源:origin: stackoverflow.com
Classifier mode
if(alg.equals("DecisionStump"))
{
mode = new DecisionStump();
}
else if(alg.equals("NaiveBayes"))
{
mode = new NaiveBayes();
}
代码示例来源:origin: nz.ac.waikato.cms.weka/weka-stable
/** Creates a default NaiveBayes */
public Classifier getClassifier() {
return new NaiveBayes();
}
代码示例来源:origin: Waikato/weka-trunk
/** Creates a default NaiveBayes */
public Classifier getClassifier() {
return new NaiveBayes();
}
代码示例来源:origin: stackoverflow.com
// Untested Java, I use Weka through JRuby
NaiveBayes naiveBayes = new NaiveBayes();
Remove remove = new Remove();
remove.setOptions(Utils.splitOptions("-R 1-2"));
FilteredClassifier model = new FilteredClassifier(naiveBayes, remove);
// Use model to classify as normal
代码示例来源:origin: hltfbk/Excitement-Open-Platform
/**
* Builds the classifier for the given training model
*/
private void initializeModel(CommonConfig config)
throws ConfigurationException
{
// Train the classifier
logger.info("Training the classifier...");
File arffFile = new File(modelDir + "/" + this.getClass().getSimpleName() + ".arff");
classifier = new NaiveBayes();
try {
Instances data = DataSource.read(arffFile.getAbsolutePath());
data.setClassIndex(data.numAttributes() - 1);
classifier.buildClassifier(data);
} catch (Exception e) {
throw new ConfigurationException(e);
}
}
代码示例来源:origin: stackoverflow.com
Classifier Clfs = null;
try {
if (modelType.equals("J48")) {
Clfs = new J48();
} else if (modelType.equals("MLP")) {
Clfs = new MultilayerPerceptron();
} else if (modelType.equals("IB3")) {
Clfs = new IBk(3);
} else if (modelType.equals("RF")) {
Clfs = new RandomForest();
} else if (modelType.equals("NB")) {
Clfs = new NaiveBayes();
//...
代码示例来源:origin: nz.ac.waikato.cms.weka/distributedWekaBase
protected WekaClassifierMapTask setupAggregateableBatchClassifier() {
WekaClassifierMapTask task = new WekaClassifierMapTask();
task.setClassifier(new weka.classifiers.bayes.NaiveBayes());
return task;
}
代码示例来源:origin: org.dkpro.similarity/dkpro-similarity-algorithms-ml-gpl
public static Classifier getClassifier(WekaClassifier classifier)
throws IllegalArgumentException
{
try {
switch (classifier)
{
case NAIVE_BAYES:
return new NaiveBayes();
case J48:
J48 j48 = new J48();
j48.setOptions(new String[] { "-C", "0.25", "-M", "2" });
return j48;
case SMO:
SMO smo = new SMO();
smo.setOptions(Utils.splitOptions("-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K \"weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0\""));
return smo;
case LOGISTIC:
Logistic logistic = new Logistic();
logistic.setOptions(Utils.splitOptions("-R 1.0E-8 -M -1"));
return logistic;
default:
throw new IllegalArgumentException("Classifier " + classifier + " not found!");
}
}
catch (Exception e) {
throw new IllegalArgumentException(e);
}
}
代码示例来源:origin: de.tudarmstadt.ukp.similarity.algorithms/de.tudarmstadt.ukp.similarity.algorithms.ml-asl
public static Classifier getClassifier(WekaClassifier classifier)
throws IllegalArgumentException
{
try {
switch (classifier)
{
case NAIVE_BAYES:
return new NaiveBayes();
case J48:
J48 j48 = new J48();
j48.setOptions(new String[] { "-C", "0.25", "-M", "2" });
return j48;
case SMO:
SMO smo = new SMO();
smo.setOptions(Utils.splitOptions("-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K \"weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0\""));
return smo;
case LOGISTIC:
Logistic logistic = new Logistic();
logistic.setOptions(Utils.splitOptions("-R 1.0E-8 -M -1"));
return logistic;
default:
throw new IllegalArgumentException("Classifier " + classifier + " not found!");
}
}
catch (Exception e) {
throw new IllegalArgumentException(e);
}
}
代码示例来源:origin: dkpro/dkpro-similarity
public static Classifier getClassifier(WekaClassifier classifier)
throws IllegalArgumentException
{
try {
switch (classifier)
{
case NAIVE_BAYES:
return new NaiveBayes();
case J48:
J48 j48 = new J48();
j48.setOptions(new String[] { "-C", "0.25", "-M", "2" });
return j48;
case SMO:
SMO smo = new SMO();
smo.setOptions(Utils.splitOptions("-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K \"weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0\""));
return smo;
case LOGISTIC:
Logistic logistic = new Logistic();
logistic.setOptions(Utils.splitOptions("-R 1.0E-8 -M -1"));
return logistic;
default:
throw new IllegalArgumentException("Classifier " + classifier + " not found!");
}
}
catch (Exception e) {
throw new IllegalArgumentException(e);
}
}
代码示例来源:origin: nz.ac.waikato.cms.weka/distributedWekaBase
@Test
public void testScoreWithClassifier() throws Exception {
Instances train = new Instances(new BufferedReader(new StringReader(
CorrelationMatrixMapTaskTest.IRIS)));
train.setClassIndex(train.numAttributes() - 1);
NaiveBayes bayes = new NaiveBayes();
bayes.buildClassifier(train);
WekaScoringMapTask task = new WekaScoringMapTask();
task.setModel(bayes, train, train);
assertEquals(0, task.getMissingMismatchAttributeInfo().length());
assertEquals(3, task.getPredictionLabels().size());
for (int i = 0; i < train.numInstances(); i++) {
assertEquals(3, task.processInstance(train.instance(i)).length);
}
}
代码示例来源:origin: stackoverflow.com
public class Run {
public static void main(String[] args) throws Exception {
ConverterUtils.DataSource source1 = new ConverterUtils.DataSource("./data/train.arff");
Instances train = source1.getDataSet();
// setting class attribute if the data format does not provide this information
// For example, the XRFF format saves the class attribute information as well
if (train.classIndex() == -1)
train.setClassIndex(train.numAttributes() - 1);
ConverterUtils.DataSource source2 = new ConverterUtils.DataSource("./data/test.arff");
Instances test = source2.getDataSet();
// setting class attribute if the data format does not provide this information
// For example, the XRFF format saves the class attribute information as well
if (test.classIndex() == -1)
test.setClassIndex(train.numAttributes() - 1);
// model
NaiveBayes naiveBayes = new NaiveBayes();
naiveBayes.buildClassifier(train);
// this does the trick
double label = naiveBayes.classifyInstance(test.instance(0));
test.instance(0).setClassValue(label);
System.out.println(test.instance(0).stringValue(4));
}
}
代码示例来源:origin: nz.ac.waikato.cms.weka/distributedWekaBase
@Test
public void testScoreWithClassifierSomeMissingFields() throws Exception {
Instances train = new Instances(new BufferedReader(new StringReader(
CorrelationMatrixMapTaskTest.IRIS)));
train.setClassIndex(train.numAttributes() - 1);
NaiveBayes bayes = new NaiveBayes();
bayes.buildClassifier(train);
WekaScoringMapTask task = new WekaScoringMapTask();
Remove r = new Remove();
r.setAttributeIndices("1");
r.setInputFormat(train);
Instances test = Filter.useFilter(train, r);
task.setModel(bayes, train, test);
assertTrue(task.getMissingMismatchAttributeInfo().length() > 0);
assertTrue(task.getMissingMismatchAttributeInfo().equals(
"sepallength missing from incoming data\n"));
assertEquals(3, task.getPredictionLabels().size());
for (int i = 0; i < test.numInstances(); i++) {
assertEquals(3, task.processInstance(test.instance(i)).length);
}
}
内容来源于网络,如有侵权,请联系作者删除!