org.opengis.referencing.operation.Matrix.setElement()方法的使用及代码示例

x33g5p2x  于2022-01-25 转载在 其他  
字(12.7k)|赞(0)|评价(0)|浏览(110)

本文整理了Java中org.opengis.referencing.operation.Matrix.setElement()方法的一些代码示例,展示了Matrix.setElement()的具体用法。这些代码示例主要来源于Github/Stackoverflow/Maven等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Matrix.setElement()方法的具体详情如下:
包路径:org.opengis.referencing.operation.Matrix
类名称:Matrix
方法名:setElement

Matrix.setElement介绍

[英]Modifies the value at the specified row and column of this matrix.
[中]修改此矩阵指定行和列的值。

代码示例

代码示例来源:origin: geotools/geotools

/**
 * Creates a transform that apply the same translation along all axis.
 *
 * @param dimension The input and output dimensions.
 * @param offset The translation.
 * @return The offset transform.
 * @since 2.3
 */
public static LinearTransform createTranslation(final int dimension, final double offset) {
  if (offset == 0) {
    return IdentityTransform.create(dimension);
  }
  final Matrix matrix = new GeneralMatrix(dimension + 1);
  for (int i = 0; i < dimension; i++) {
    matrix.setElement(i, dimension, offset);
  }
  return create(matrix);
}

代码示例来源:origin: geotools/geotools

/**
 * Creates a transform that apply a uniform scale along all axis.
 *
 * @param dimension The input and output dimensions.
 * @param scale The scale factor.
 * @return The scale transform.
 * @since 2.3
 */
public static LinearTransform createScale(final int dimension, final double scale) {
  if (scale == 1) {
    return IdentityTransform.create(dimension);
  }
  final Matrix matrix = new GeneralMatrix(dimension + 1);
  for (int i = 0; i < dimension; i++) {
    matrix.setElement(i, i, scale);
  }
  return create(matrix);
}

代码示例来源:origin: geotools/geotools

/**
 * Creates a matrix from this group of parameters.
 *
 * @return A matrix created from this group of parameters.
 */
public Matrix getMatrix() {
  final int numRow = this.numRow.intValue();
  final int numCol = this.numCol.intValue();
  final Matrix matrix = MatrixFactory.create(numRow, numCol);
  if (matrixValues != null) {
    for (int j = 0; j < numRow; j++) {
      final ParameterValue[] row = matrixValues[j];
      if (row != null) {
        for (int i = 0; i < numCol; i++) {
          final ParameterValue element = row[i];
          if (element != null) {
            matrix.setElement(j, i, element.doubleValue());
          }
        }
      }
    }
  }
  return matrix;
}

代码示例来源:origin: geotools/geotools

Integer.parseInt(name.substring(prefix.length(), split));
  final int col = Integer.parseInt(name.substring(split + 1));
  matrix.setElement(row, col, ((ParameterValue) param).doubleValue());
  continue;
} catch (NumberFormatException exception) {

代码示例来源:origin: geotools/geotools

matrix.setElement(j, j, 0.0);
matrix.setElement(j, i, scale);
matrix.setElement(j, dimension, offset);

代码示例来源:origin: geotools/geotools

matrix.setElement(xDimension, dimension, dx);
matrix.setElement(yDimension, dimension, dy);
mt = ProjectiveTransform.create(matrix);

代码示例来源:origin: geotools/geotools

if (translationColumn >= 0) { // Paranoiac check: should always be 1.
  final double translation = matrix.getElement(0, translationColumn);
  matrix.setElement(0, translationColumn, translation + epochShift);

代码示例来源:origin: apache/sis

/**
   * Returns a matrix for an affine transform from all source coordinates to the coordinates of the
   * source components selected for participating in the coordinate operation.
   *
   * @param sourceDimensions    number of dimension of the source {@code CompoundCRS}.
   * @param selectedDimensions  number of source dimensions needed by the coordinate operations.
   * @param selected            all {@code SourceComponent} instances needed for the target {@code CompoundCRS}.
   */
  static Matrix sourceToSelected(final int sourceDimensions, final int selectedDimensions, final SubOperationInfo[] selected) {
    final Matrix select = Matrices.createZero(selectedDimensions + 1, sourceDimensions + 1);
    select.setElement(selectedDimensions, sourceDimensions, 1);
    int j = 0;
    for (final SubOperationInfo component : selected) {
      for (int i=component.startAtDimension; i<component.endAtDimension; i++) {
        select.setElement(j++, i, 1);
      }
    }
    return select;
  }
}

代码示例来源:origin: org.apache.sis.core/sis-referencing

/**
   * Returns a matrix for an affine transform from all source coordinates to the coordinates of the
   * source components selected for participating in the coordinate operation.
   *
   * @param sourceDimensions    number of dimension of the source {@code CompoundCRS}.
   * @param selectedDimensions  number of source dimensions needed by the coordinate operations.
   * @param selected            all {@code SourceComponent} instances needed for the target {@code CompoundCRS}.
   */
  static Matrix sourceToSelected(final int sourceDimensions, final int selectedDimensions, final SubOperationInfo[] selected) {
    final Matrix select = Matrices.createZero(selectedDimensions + 1, sourceDimensions + 1);
    select.setElement(selectedDimensions, sourceDimensions, 1);
    int j = 0;
    for (final SubOperationInfo component : selected) {
      for (int i=component.startAtDimension; i<component.endAtDimension; i++) {
        select.setElement(j++, i, 1);
      }
    }
    return select;
  }
}

代码示例来源:origin: geotools/geotools

/** A filter for the set of available operations. */
private static final class MethodFilter implements Predicate<MathTransformProvider> {
  /** The expected type ({@code Projection.class}) for projections). */
  private final Class<? extends Operation> type;
  /** Constructs a filter for the set of math operations methods. */
  public MethodFilter(final Class<? extends Operation> type) {
    this.type = type;
  }
  /**
   * Returns {@code true} if the specified element should be included. If the type is unknown,
   * conservatively returns {@code true}.
   */
  @Override
  public boolean test(MathTransformProvider element) {
    if (element instanceof MathTransformProvider) {
      final Class<? extends Operation> t =
          ((MathTransformProvider) element).getOperationType();
      if (t != null && !type.isAssignableFrom(t)) {
        return false;
      }
    }
    return true;
  }
}

代码示例来源:origin: geotools/geotools

matrix.setElement(i, lastMatrixColumn, rotate);

代码示例来源:origin: opengeospatial/geoapi

/**
 * Gets the derivative of this transform at a point.
 * The derivative of an affine transform is constant everywhere.
 *
 * @param  point  ignored - may be {@code null}.
 * @return the derivative (never {@code null}).
 */
@Override
public Matrix derivative(final Point2D point) {
  final Matrix m = new SimpleMatrix(2, 2);
  m.setElement(0, 0, getScaleX());
  m.setElement(1, 1, getScaleY());
  m.setElement(0, 1, getShearX());
  m.setElement(1, 0, getShearY());
  return m;
}

代码示例来源:origin: Geomatys/geotoolkit

/**
   * Modifies the given matrix in order to reverse the direction of the axis at the given
   * dimension. The matrix is assumed affine, but this is not verified.
   *
   * @param matrix    The matrix to modify.
   * @param dimension The dimension of the axis to reverse.
   * @param span      The envelope span at the dimension of the axis to be reversed,
   *                  in units of the source coordinate system.
   *
   * @since 3.16
   *
   * @deprecated No replacement, since experience has shown that this operation causes more problems
   *             than solutions.
   */
  @Deprecated
  public static void reverseAxisDirection(final Matrix matrix, final int dimension, final double span) {
    final int numRows = matrix.getNumRow();
    final int lastCol = matrix.getNumCol() - 1;
    for (int j=0; j<numRows; j++) {
      final double scale = matrix.getElement(j, dimension);
      if (scale != 0) {
        // The formula below still work with scale=0, but we don't want
        // to change the scale sign from positive zero to negative zero.
        matrix.setElement(j, dimension, -scale);
        matrix.setElement(j, lastCol, matrix.getElement(j, lastCol) + scale*span);
      }
    }
  }
}

代码示例来源:origin: org.geotools/gt2-coverage

/**
 * Translates the specified math transform according the specified pixel orientation.
 * The {@code gridToCRS} math transform is assumed maps the pixel centers.
 */
private static MathTransform translate(final MathTransform gridToCRS,
                    final PixelOrientation orientation,
                    final int gridDimensionX, final int gridDimensionY)
{
  if (PixelOrientation.CENTER.equals(orientation)) {
    return gridToCRS;
  }
  final Point2D.Double offset = getDirectPixelTranslation(orientation);
  final int dimension = gridToCRS.getSourceDimensions();
  final Matrix matrix = MatrixFactory.create(dimension + 1);
  matrix.setElement(gridDimensionX, dimension, offset.x);
  matrix.setElement(gridDimensionY, dimension, offset.y);
  return ConcatenatedTransform.create(ProjectiveTransform.create(matrix), gridToCRS);
}

代码示例来源:origin: apache/sis

/**
 * Sets the scale and offset coefficients in the given "grid to CRS" transform if possible.
 * This method is invoked only for variables that represent a coordinate system axis.
 */
@Override
protected boolean trySetTransform(final Matrix gridToCRS, final int srcDim, final int tgtDim, final Vector values)
    throws IOException, DataStoreException
{
  if (variable instanceof CoordinateAxis1D) {
    final CoordinateAxis1D axis = (CoordinateAxis1D) variable;
    if (axis.isRegular()) {
      gridToCRS.setElement(tgtDim, srcDim, axis.getIncrement());
      gridToCRS.setElement(tgtDim, gridToCRS.getNumCol() - 1, axis.getStart());
      return true;
    }
  }
  return super.trySetTransform(gridToCRS, srcDim, tgtDim, values);
}

代码示例来源:origin: org.apache.sis.core/sis-referencing

/**
 * Returns the derivative at the given grid indices.
 *
 * <div class="section">Default implementation</div>
 * The current implementation assumes that the derivative is constant everywhere in the cell
 * at the given indices. It does not yet take in account the fractional part of {@code gridX}
 * and {@code gridY}, because empirical tests suggest that the accuracy of such interpolation
 * is uncertain.
 *
 * @param  gridX  first grid ordinate of the point for which to get the translation.
 * @param  gridY  second grid ordinate of the point for which to get the translation.
 * @return the derivative at the given location.
 */
public Matrix derivativeInCell(final double gridX, final double gridY) {
  final int ix = Math.max(0, Math.min(gridSize[0] - 2, (int) gridX));
  final int iy = Math.max(0, Math.min(gridSize[1] - 2, (int) gridY));
  final Matrix derivative = Matrices.createDiagonal(getTranslationDimensions(), gridSize.length);
  for (int j=derivative.getNumRow(); --j>=0;) {
    final double orig = getCellValue(j, iy, ix);
    derivative.setElement(j, 0, derivative.getElement(j, 0) + (getCellValue(j, iy+1, ix) - orig));
    derivative.setElement(j, 1, derivative.getElement(j, 1) + (getCellValue(j, iy, ix+1) - orig));
  }
  return derivative;
}

代码示例来源:origin: apache/sis

/**
 * Returns the derivative at the given grid indices.
 *
 * <div class="section">Default implementation</div>
 * The current implementation assumes that the derivative is constant everywhere in the cell
 * at the given indices. It does not yet take in account the fractional part of {@code gridX}
 * and {@code gridY}, because empirical tests suggest that the accuracy of such interpolation
 * is uncertain.
 *
 * @param  gridX  first grid ordinate of the point for which to get the translation.
 * @param  gridY  second grid ordinate of the point for which to get the translation.
 * @return the derivative at the given location.
 */
public Matrix derivativeInCell(final double gridX, final double gridY) {
  final int ix = Math.max(0, Math.min(gridSize[0] - 2, (int) gridX));
  final int iy = Math.max(0, Math.min(gridSize[1] - 2, (int) gridY));
  final Matrix derivative = Matrices.createDiagonal(getTranslationDimensions(), gridSize.length);
  for (int j=derivative.getNumRow(); --j>=0;) {
    final double orig = getCellValue(j, ix, iy);
    derivative.setElement(j, 0, derivative.getElement(j, 0) + (getCellValue(j, ix+1, iy) - orig));
    derivative.setElement(j, 1, derivative.getElement(j, 1) + (getCellValue(j, ix, iy+1) - orig));
  }
  return derivative;
}

代码示例来源:origin: opengeospatial/geoapi

/**
   * Asserts that a matrix of derivatives is equals to the expected ones within a positive delta.
   */
  @Override
  protected void assertMatrixEquals(final String message, final Matrix expected, final Matrix actual, final Matrix tolmat)
      throws DerivativeFailure
  {
    if (tolmat != null) {
      final int numRow = tolmat.getNumRow();
      final int numCol = tolmat.getNumCol();
      for (int j=0; j<numRow; j++) {
        for (int i=0; i<numCol; i++) {
          tolmat.setElement(j, i, DERIVATIVE_TOLERANCE);
        }
      }
    }
    super.assertMatrixEquals(message, expected, actual, tolmat);
  }
}

代码示例来源:origin: org.apache.sis.core/sis-referencing

/**
 * Computes the derivative by concatenating the "geographic to geocentric" and "geocentric to geographic" matrix,
 * with the {@linkplain #scale} factor between them.
 *
 * <div class="note"><b>Note:</b>
 * we could improve a little bit the precision by computing the derivative in the interpolation grid:
 *
 * {@preformat java
 *     grid.derivativeInCell(grid.normalizedToGridX(λ), grid.normalizedToGridY(φ));
 * }
 *
 * But this is a little bit complicated (need to convert to normalized units and divide by the grid
 * cell size) for a very small difference. For now we neglect that part.</div>
 *
 * @param  m1  the derivative computed by the "geographic to geocentric" conversion.
 * @param  m2  the derivative computed by the "geocentric to geographic" conversion.
 * @return the derivative for the "interpolated geocentric" transformation.
 */
final Matrix concatenate(final Matrix m1, final Matrix m2) {
  for (int i = m1.getNumCol(); --i >= 0;) {   // Number of columns can be 2 or 3.
    for (int j = 3; --j >= 0;) {            // Number of rows can not be anything else than 3.
      m1.setElement(j, i, m1.getElement(j, i) * scale);
    }
  }
  return Matrices.multiply(m2, m1);
}

代码示例来源:origin: apache/sis

/**
 * Tests {@link TensorParameters#ALPHANUM} formatting.
 * <ul>
 *   <li>Group name shall be {@code "Affine parametric transformation"}.</li>
 *   <li>No {@code "num_row"} or {@code "num_col"} parameters if their value is equals to 3.</li>
 *   <li>Parameter names shall be of the form {@code "A0"}.</li>
 *   <li>Identifiers present, but only for A0-A2 and B0-B2.</li>
 * </ul>
 */
@Test
public void testWKT2() {
  final Matrix matrix = Matrices.createIdentity(3);
  matrix.setElement(0,2,  4);
  matrix.setElement(1,0, -2);
  matrix.setElement(2,2,  7);
  final ParameterValueGroup group = TensorParameters.ALPHANUM.createValueGroup(
      singletonMap(TensorValues.NAME_KEY, Affine.NAME), matrix);
  validate(group);
  assertWktEquals(
      "PARAMETERGROUP[“Affine parametric transformation”,\n" +
      "  PARAMETER[“A2”, 4.0, ID[“EPSG”, 8625]],\n"  +
      "  PARAMETER[“B0”, -2.0, ID[“EPSG”, 8639]],\n" +
      "  PARAMETER[“C2”, 7.0]]", group);
}

相关文章