【死磕Java并发】-----J.U.C之阻塞队列:PriorityBlockingQueue

x33g5p2x  于2021-12-18 转载在 其他  
字(6.3k)|赞(0)|评价(0)|浏览(440)

我们知道线程Thread可以调用setPriority(int newPriority)来设置优先级的,线程优先级高的线程先执行,优先级低的后执行。而前面介绍的ArrayBlockingQueue、LinkedBlockingQueue都是采用FIFO原则来确定线程执行的先后顺序,那么有没有一个队列可以支持优先级呢? PriorityBlockingQueue 。

PriorityBlockingQueue是一个支持优先级的无界阻塞队列。默认情况下元素采用自然顺序升序排序,当然我们也可以通过构造函数来指定Comparator来对元素进行排序。需要注意的是PriorityBlockingQueue不能保证同优先级元素的顺序。

二叉堆

由于PriorityBlockingQueue底层采用二叉堆来实现的,所以有必要先介绍下二叉堆。

二叉堆是一种特殊的堆,就结构性而言就是完全二叉树或者是近似完全二叉树,满足树结构性和堆序性。树机构特性就是完全二叉树应该有的结构,堆序性则是:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆。它有两种表现形式:最大堆、最小堆。

最大堆:父节点的键值总是大于或等于任何一个子节点的键值(下右图)

最小堆:父节点的键值总是小于或等于任何一个子节点的键值(下走图)

二叉堆一般用数组表示,如果父节点的节点位置在n处,那么其左孩子节点为:2 * n + 1 ,其右孩子节点为2 * (n + 1),其父节点为(n - 1) / 2 处。上左图的数组表现形式为:

二叉堆的基本结构了解了,下面来看看二叉堆的添加和删除节点。二叉堆的添加和删除相对于二叉树来说会简单很多。

添加元素

首先将要添加的元素N插添加到堆的末尾位置(在二叉堆中我们称之为空穴)。如果元素N放入空穴中而不破坏堆的序(其值大于跟父节点值(最大堆是小于父节点)),那么插入完成。否则,我们则将该元素N的节点与其父节点进行交换,然后与其新父节点进行比较直到它的父节点不在比它小(最大堆是大)或者到达根节点。

假如有如下一个二叉堆

这是一个最小堆,其父节点总是小于等于任一一个子节点。现在我们添加一个元素2。

第一步:在末尾添加一个元素2,如下:

第二步:元素2比其父节点6小,进行替换,如下:

第三步:继续与其父节点5比较,小于,替换:

第四步:继续比较其跟节点1,发现跟节点比自己小,则完成,到这里元素2插入完毕。所以整个添加元素过程可以概括为:在元素末尾插入元素,然后不断比较替换直到不能移动为止。

复杂度:Ο(logn)

删除元素

删除元素与增加元素一样,需要维护整个二叉堆的序。删除位置1的元素(数组下标0),则把最后一个元素空出来移到最前边,然后和它的两个子节点比较,如果两个子节点中较小的节点小于该节点,就将他们交换,知道两个子节点都比该元素大为止。

就上面二叉堆而言,删除的元素为元素1。

第一步:删掉元素1,元素6空出来,如下:

第二步:与其两个子节点(元素2、元素3)比较,都小,将其中较小的元素(元素2)放入到该空穴中:

第三步:继续比较两个子节点(元素5、元素7),还是都小,则将较小的元素(元素5)放入到该空穴中:!

第四步:比较其子节点(元素8),比该节点小,则元素6放入该空穴位置不会影响二叉堆的树结构,放入:

到这里整个删除操作就已经完成了。

二叉堆的添加、删除操作还是比较简单的,很容易就理解了。下面我们就参考该内容来开启PriorityBlockingQueue的源代码研究。

PriorityBlockingQueue

PriorityBlockingQueue继承AbstractQueue,实现BlockingQueue接口。

public class PriorityBlockingQueue<E> extends AbstractQueue<E>
    implements BlockingQueue<E>, java.io.Serializable

定义了一些属性:

// 默认容量
    private static final int DEFAULT_INITIAL_CAPACITY = 11;

    // 最大容量
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    // 二叉堆数组
    private transient Object[] queue;

    // 队列元素的个数
    private transient int size;

    // 比较器,如果为空,则为自然顺序
    private transient Comparator<? super E> comparator;

    // 内部锁
    private final ReentrantLock lock;

    private final Condition notEmpty;

    //
    private transient volatile int allocationSpinLock;

    // 优先队列:主要用于序列化,这是为了兼容之前的版本。只有在序列化和反序列化才非空
    private PriorityQueue<E> q;

内部仍然采用可重入锁ReentrantLock来实现同步机制,但是这里只有一个notEmpty的Condition,了解了ArrayBlockingQueue我们知道它定义了两个Condition,之类为何只有一个呢?原因就在于PriorityBlockingQueue是一个无界队列,插入总是会成功,除非消耗尽了资源导致服务器挂。

入列

PriorityBlockingQueue提供put()、add()、offer()方法向队列中加入元素。我们这里从put()入手:put(E e) :将指定元素插入此优先级队列。

public void put(E e) {
        offer(e); // never need to block
    }

PriorityBlockingQueue是无界的,所以不可能会阻塞。内部调用offer(E e):

public boolean offer(E e) {
        // 不能为null
        if (e == null)
            throw new NullPointerException();
        // 获取锁
        final ReentrantLock lock = this.lock;
        lock.lock();
        int n, cap;
        Object[] array;
        // 扩容
        while ((n = size) >= (cap = (array = queue).length))
            tryGrow(array, cap);
        try {
            Comparator<? super E> cmp = comparator;
            // 根据比较器是否为null,做不同的处理
            if (cmp == null)
                siftUpComparable(n, e, array);
            else
                siftUpUsingComparator(n, e, array, cmp);
            size = n + 1;
            // 唤醒正在等待的消费者线程
            notEmpty.signal();
        } finally {
            lock.unlock();
        }
        return true;
    }

siftUpComparable

当比较器comparator为null时,采用自然排序,调用siftUpComparable方法:

private static <T> void siftUpComparable(int k, T x, Object[] array) {
        Comparable<? super T> key = (Comparable<? super T>) x;
        // “上冒”过程
        while (k > 0) {
            // 父级节点 (n - ) / 2
            int parent = (k - 1) >>> 1;
            Object e = array[parent];

            // key >= parent 完成(最大堆)
            if (key.compareTo((T) e) >= 0)
                break;
            // key < parant 替换
            array[k] = e;
            k = parent;
        }
        array[k] = key;
    }

这段代码所表示的意思:将元素X插入到数组中,然后进行调整以保持二叉堆的特性。

siftUpUsingComparator

当比较器不为null时,采用所指定的比较器,调用siftUpUsingComparator方法:

private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
                                       Comparator<? super T> cmp) {
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = array[parent];
            if (cmp.compare(x, (T) e) >= 0)
                break;
            array[k] = e;
            k = parent;
        }
        array[k] = x;
    }

扩容:tryGrow

private void tryGrow(Object[] array, int oldCap) {
        lock.unlock();      // 扩容操作使用自旋,不需要锁主锁,释放
        Object[] newArray = null;
        // CAS 占用
        if (allocationSpinLock == 0 && UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset, 0, 1)) {
            try {

                // 新容量 最小翻倍
                int newCap = oldCap + ((oldCap < 64) ? (oldCap + 2) :  (oldCap >> 1));

                // 超过
                if (newCap - MAX_ARRAY_SIZE > 0) {    // possible overflow
                    int minCap = oldCap + 1;
                    if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
                        throw new OutOfMemoryError();
                    newCap = MAX_ARRAY_SIZE;        // 最大容量
                }
                if (newCap > oldCap && queue == array)
                    newArray = new Object[newCap];
            } finally {
                allocationSpinLock = 0;     // 扩容后allocationSpinLock = 0 代表释放了自旋锁
            }
        }
        // 到这里如果是本线程扩容newArray肯定是不为null,为null就是其他线程在处理扩容,那就让给别的线程处理
        if (newArray == null)
            Thread.yield();
        // 主锁获取锁
        lock.lock();
        // 数组复制
        if (newArray != null && queue == array) {
            queue = newArray;
            System.arraycopy(array, 0, newArray, 0, oldCap);
        }
    }

整个添加元素的过程和上面二叉堆一模一样:先将元素添加到数组末尾,然后采用“上冒”的方式将该元素尽量往上冒。

出列

PriorityBlockingQueue提供poll()、remove()方法来执行出对操作。出对的永远都是第一个元素:array[0]。

public E poll() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return dequeue();
        } finally {
            lock.unlock();
        }
    }

先获取锁,然后调用dequeue()方法:

private E dequeue() {
        // 没有元素 返回null
        int n = size - 1;
        if (n < 0)
            return null;
        else {
            Object[] array = queue;
            // 出对元素
            E result = (E) array[0];
            // 最后一个元素(也就是插入到空穴中的元素)
            E x = (E) array[n];
            array[n] = null;
            // 根据比较器释放为null,来执行不同的处理
            Comparator<? super E> cmp = comparator;
            if (cmp == null)
                siftDownComparable(0, x, array, n);
            else
                siftDownUsingComparator(0, x, array, n, cmp);
            size = n;
            return result;
        }
    }

siftDownComparable

如果比较器为null,则调用siftDownComparable来进行自然排序处理:

private static <T> void siftDownComparable(int k, T x, Object[] array,
                                               int n) {
        if (n > 0) {
            Comparable<? super T> key = (Comparable<? super T>)x;
            // 最后一个叶子节点的父节点位置
            int half = n >>> 1;
            while (k < half) {
                int child = (k << 1) + 1;       // 待调整位置左节点位置
                Object c = array[child];        //左节点
                int right = child + 1;          //右节点

                //左右节点比较,取较小的
                if (right < n &&
                        ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
                    c = array[child = right];

                //如果待调整key最小,那就退出,直接赋值
                if (key.compareTo((T) c) <= 0)
                    break;
                //如果key不是最小,那就取左右节点小的那个放到调整位置,然后小的那个节点位置开始再继续调整
                array[k] = c;
                k = child;
            }
            array[k] = key;
        }
    }

处理思路和二叉堆删除节点的逻辑一样:就第一个元素定义为空穴,然后把最后一个元素取出来,尝试插入到空穴位置,并与两个子节点值进行比较,如果不符合,则与其中较小的子节点进行替换,然后继续比较调整。

siftDownUsingComparator

如果指定了比较器,则采用比较器来进行调整:

private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
                                                    int n,
                                                    Comparator<? super T> cmp) {
        if (n > 0) {
            int half = n >>> 1;
            while (k < half) {
                int child = (k << 1) + 1;
                Object c = array[child];
                int right = child + 1;
                if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
                    c = array[child = right];
                if (cmp.compare(x, (T) c) <= 0)
                    break;
                array[k] = c;
                k = child;
            }
            array[k] = x;
        }
    }

PriorityBlockingQueue采用二叉堆来维护,所以整个处理过程不是很复杂,添加操作则是不断“上冒”,而删除操作则是不断“下掉”。掌握二叉堆就掌握了PriorityBlockingQueue,无论怎么变还是。对于PriorityBlockingQueue需要注意的是他是一个无界队列,所以添加操作是不会失败的,除非资源耗尽。

相关文章