本文整理了Java中org.bitcoinj.core.Block.buildMerkleTree()
方法的一些代码示例,展示了Block.buildMerkleTree()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Block.buildMerkleTree()
方法的具体详情如下:
包路径:org.bitcoinj.core.Block
类名称:Block
方法名:buildMerkleTree
暂无
代码示例来源:origin: cash.bitcoinj/bitcoinj-core
private Sha256Hash calculateMerkleRoot() {
List<byte[]> tree = buildMerkleTree();
return Sha256Hash.wrap(tree.get(tree.size() - 1));
}
代码示例来源:origin: greenaddress/GreenBits
private Sha256Hash calculateMerkleRoot() {
List<byte[]> tree = buildMerkleTree();
return Sha256Hash.wrap(tree.get(tree.size() - 1));
}
代码示例来源:origin: fr.acinq/bitcoinj-core
private Sha256Hash calculateMerkleRoot(boolean segwit) {
List<byte[]> tree = buildMerkleTree(segwit);
return Sha256Hash.wrap(tree.get(tree.size() - 1));
}
代码示例来源:origin: HashEngineering/dashj
private Sha256Hash calculateMerkleRoot() {
List<byte[]> tree = buildMerkleTree();
return Sha256Hash.wrap(tree.get(tree.size() - 1));
}
代码示例来源:origin: fr.acinq/bitcoinj-core
private List<byte[]> buildMerkleTree(boolean segwit) {
// The Merkle root is based on a tree of hashes calculated from the transactions:
//
// root
// / \
// A B
// / \ / \
// t1 t2 t3 t4
//
// The tree is represented as a list: t1,t2,t3,t4,A,B,root where each
// entry is a hash.
//
// The hashing algorithm is double SHA-256. The leaves are a hash of the serialized contents of the transaction.
// The interior nodes are hashes of the concenation of the two child hashes.
//
// This structure allows the creation of proof that a transaction was included into a block without having to
// provide the full block contents. Instead, you can provide only a Merkle branch. For example to prove tx2 was
// in a block you can just provide tx2, the hash(tx1) and B. Now the other party has everything they need to
// derive the root, which can be checked against the block header. These proofs aren't used right now but
// will be helpful later when we want to download partial block contents.
//
// Note that if the number of transactions is not even the last tx is repeated to make it so (see
// tx3 above). A tree with 5 transactions would look like this:
//
// root
// / \
// 1 5
// / \ / \
// 2 3 4 4
// / \ / \ / \
内容来源于网络,如有侵权,请联系作者删除!