本文整理了Java中org.apache.spark.sql.DataFrame.show()
方法的一些代码示例,展示了DataFrame.show()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。DataFrame.show()
方法的具体详情如下:
包路径:org.apache.spark.sql.DataFrame
类名称:DataFrame
方法名:show
暂无
代码示例来源:origin: Impetus/Kundera
@Override
public boolean persist(List listEntity, EntityMetadata m, SparkClient sparkClient)
{
try
{
Seq s = scala.collection.JavaConversions.asScalaBuffer(listEntity).toList();
ClassTag tag = scala.reflect.ClassTag$.MODULE$.apply(m.getEntityClazz());
JavaRDD personRDD = sparkClient.sparkContext.parallelize(s, 1, tag).toJavaRDD();
DataFrame df = sparkClient.sqlContext.createDataFrame(personRDD, m.getEntityClazz());
sparkClient.sqlContext.sql("use " + m.getSchema());
if (logger.isDebugEnabled())
{
logger.info("Below are the registered table with hive context: ");
sparkClient.sqlContext.sql("show tables").show();
}
df.write().insertInto(m.getTableName());
return true;
}
catch (Exception e)
{
throw new KunderaException("Cannot persist object(s)", e);
}
}
代码示例来源:origin: stackoverflow.com
DataFrame df2 = df.groupBy("Column_one", "Column_two").count();
df2.show();
代码示例来源:origin: stackoverflow.com
List<String> stringAsList = new ArrayList<String>();
stringAsList.add("buzz");
JavaRDD<Row> rowRDD = sparkContext.parallelize(stringAsList).map((String row) -> {
return RowFactory.create(row);
});
StructType schema = DataTypes.createStructType(new StructField[] { DataTypes.createStructField("fizz", DataTypes.StringType, false) });
DataFrame df = sqlContext.createDataFrame(rowRDD, schema).toDF();
df.show();
//+----+
|fizz|
+----+
|buzz|
代码示例来源:origin: stackoverflow.com
results.show();
代码示例来源:origin: stackoverflow.com
SparkConf sf = new SparkConf().setAppName("name").setMaster("local[*]");
JavaSparkContext sc = new JavaSparkContext(sf);
SQLContext sqlCon = new SQLContext(sc);
Map map = new HashMap<String, Map<String, String>>();
map.put("test1", putMap);
HashMap putMap = new HashMap<String, String>();
putMap.put("1", "test");
List<Tuple2<String, HashMap>> list = new ArrayList<Tuple2<String, HashMap>>();
Set<String> allKeys = map.keySet();
for (String key : allKeys) {
list.add(new Tuple2<String, HashMap>(key, (HashMap) map.get(key)));
};
JavaRDD<Tuple2<String, HashMap>> rdd = sc.parallelize(list);
System.out.println(rdd.first());
List<StructField> fields = new ArrayList<>();
StructField field1 = DataTypes.createStructField("String", DataTypes.StringType, true);
StructField field2 = DataTypes.createStructField("Map",
DataTypes.createMapType(DataTypes.StringType, DataTypes.StringType), true);
fields.add(field1);
fields.add(field2);
StructType struct = DataTypes.createStructType(fields);
JavaRDD<Row> rowRDD = rdd.map(new Function<Tuple2<String, HashMap>, Row>() {
@Override
public Row call(Tuple2<String, HashMap> arg0) throws Exception {
return RowFactory.create(arg0._1, arg0._2);
}
});
DataFrame df = sqlCon.createDataFrame(rowRDD, struct);
df.show();
代码示例来源:origin: stackoverflow.com
DataFrame df1 = sqlContext.createDataFrame(javaSparkContext.parallelize(dataForFirstDF), schema);
df1.show();
result.show();
代码示例来源:origin: Quetzal-RDF/quetzal
public static void main( String[] args )
{
// SparkConf conf = new SparkConf().setAppName("App-mt").setMaster("local[2]");
// SparkConf conf = new SparkConf().setAppName("App-mt").setMaster("spark://Kavithas-MBP.home:7077");
SparkConf conf = new SparkConf().setAppName("App-mt").setMaster("spark://kavithas-mbp.watson.ibm.com:7077");
JavaSparkContext sc = new JavaSparkContext(conf);
HiveContext sqlContext = new HiveContext(sc.sc());
DataFrame urls = sqlContext.read().json("/tmp/urls.json");
urls.registerTempTable("urls");
DataFrame temp = sqlContext.sql("select * from urls");
temp.show();
sqlContext.sql("add jar /tmp/quetzal.jar");
sqlContext.sql("create temporary function webservice as 'com.ibm.research.rdf.store.utilities.WebServiceGetUDTF'");
DataFrame drugs = sqlContext.sql("select webservice(\"drug,id,action\", \"url\", \"\", \"GET\", \"xs=http://www.w3.org/2001/XMLSchema\", \"//row\",\"drug\",\"./drug\","
+ " \"<string>\", \"id\", \"./id\",\"<string>\", \"action\", \"./action\", \"<string>\", url) as (drug, drug_typ, id, id_typ, action, action_typ) from urls");
drugs.show();
System.out.println("Num rows:" + drugs.count());
}
代码示例来源:origin: phuonglh/vn.vitk
df.show(false);
System.out.println("N = " + df.count());
df.groupBy("label").count().show();
predictions.show();
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator().setMetricName("precision");
double accuracy = evaluator.evaluate(predictions);
代码示例来源:origin: phuonglh/vn.vitk
trainingData.show(false);
代码示例来源:origin: phuonglh/vn.vitk
/**
* Creates a n-gram data frame from text lines.
* @param lines
* @return a n-gram data frame.
*/
DataFrame createNGramDataFrame(JavaRDD<String> lines) {
JavaRDD<Row> rows = lines.map(new Function<String, Row>(){
private static final long serialVersionUID = -4332903997027358601L;
@Override
public Row call(String line) throws Exception {
return RowFactory.create(Arrays.asList(line.split("\\s+")));
}
});
StructType schema = new StructType(new StructField[] {
new StructField("words",
DataTypes.createArrayType(DataTypes.StringType), false,
Metadata.empty()) });
DataFrame wordDF = new SQLContext(jsc).createDataFrame(rows, schema);
// build a bigram language model
NGram transformer = new NGram().setInputCol("words")
.setOutputCol("ngrams").setN(2);
DataFrame ngramDF = transformer.transform(wordDF);
ngramDF.show(10, false);
return ngramDF;
}
内容来源于网络,如有侵权,请联系作者删除!