本文整理了Java中org.apache.spark.sql.DataFrame.select()
方法的一些代码示例,展示了DataFrame.select()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。DataFrame.select()
方法的具体详情如下:
包路径:org.apache.spark.sql.DataFrame
类名称:DataFrame
方法名:select
暂无
代码示例来源:origin: amidst/toolbox
private static ArrayList<String> getColumnStates(DataFrame data, String name) {
ArrayList<String> states = new ArrayList();
final Row[] statesRow = data.select(name).distinct().collect();
for (Row r : statesRow)
states.add( r.getString(0) );
return states;
}
代码示例来源:origin: stackoverflow.com
import org.apache.spark.api.java.*;
import org.apache.spark.SparkConf;
import org.apache.spark.sql.SQLContext;
import static org.apache.spark.sql.functions.*;
import org.apache.spark.sql.DataFrame;
public class App {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext= new SQLContext(sc);
DataFrame df = sqlContext.sql(
"SELECT CAST('2012-01-01' AS DATE), CAST('2013-08-02' AS DATE)").toDF("first", "second");
df.select(datediff(df.col("first"), df.col("second"))).show();
}
}
代码示例来源:origin: stackoverflow.com
df.select("C").collect();
} catch(Exception e) {
System.out.println("Failed to C for " + version);
df.select("A.D").collect();
} catch(Exception e) {
System.out.println("Failed to A.D for " + version);
代码示例来源:origin: stackoverflow.com
DataFrame personPositions = persons.select(persons.col("fullName").as("personName"),
org.apache.spark.sql.functions.explode(persons.col("positions")).as("pos"));
DataFrame test = personPositions.select(personPositions.col("personName"),
personPositions.col("pos").getField("companyName").as("companyName"), personPositions.col("pos").getField("title").as("positionTitle"));
代码示例来源:origin: stackoverflow.com
for (Row r: results.select("features", "label", "myProbability", "prediction").collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
代码示例来源:origin: phuonglh/vn.vitk
String dataPath = new Path(path, "data").toString();
DataFrame df = sqlContext().read().format("parquet").load(dataPath);
Row row = df.select("markovOrder", "weights", "tagDictionary").head();
代码示例来源:origin: phuonglh/vn.vitk
DataFrame df0 = (new SQLContext(jsc)).createDataFrame(jrdd, WhitespaceContext.class);
DataFrame df1 = model.transform(df0);
prediction = jsc.broadcast(df1.select("prediction").collect());
if (df1.count() > 0) {
output = s.map(new WhitespaceClassificationFunction());
代码示例来源:origin: phuonglh/vn.vitk
DataFrame predictionAndLabel = result.select("prediction", "label");
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator().setMetricName("precision");
if (verbose) {
代码示例来源:origin: phuonglh/vn.vitk
JavaRDD<Row> wt = df.select("word", "label").javaRDD();
JavaPairRDD<String, Set<Integer>> tagDictionary = wt.mapToPair(new PairFunction<Row, String, Set<Integer>>(){
private static final long serialVersionUID = 5865372074294028547L;
代码示例来源:origin: phuonglh/vn.vitk
df.select("dependency").write().text(outputFileName);
else
df.repartition(1).write().json(outputFileName);
内容来源于网络,如有侵权,请联系作者删除!