本文整理了Java中weka.core.Instances.get()
方法的一些代码示例,展示了Instances.get()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Instances.get()
方法的具体详情如下:
包路径:weka.core.Instances
类名称:Instances
方法名:get
[英]Returns the instance at the given position.
[中]返回给定位置的实例。
代码示例来源:origin: stackoverflow.com
double[] prediction=model.distributionForInstance(test.get(s1));
代码示例来源:origin: nz.ac.waikato.cms.weka/weka-stable
/**
* Sets the instance at index i of the supplied dataset to be the current
* instance
*
* @param i the index of the instance to be set
* @throws UnsupportedOperationException if the full dataset has not been
* retained in memory
*/
public void setInstance(int i) {
if (!dataRetained) {
throw new UnsupportedOperationException(
"Unable to set the instance based "
+ "on index because the dataset has not been retained in memory");
}
setInstance(dataset.get(i));
}
代码示例来源:origin: Waikato/weka-trunk
/**
* Sets the instance at index i of the supplied dataset to be the current
* instance
*
* @param i the index of the instance to be set
* @throws UnsupportedOperationException if the full dataset has not been
* retained in memory
*/
public void setInstance(int i) {
if (!dataRetained) {
throw new UnsupportedOperationException(
"Unable to set the instance based "
+ "on index because the dataset has not been retained in memory");
}
setInstance(dataset.get(i));
}
代码示例来源:origin: sc.fiji/Trainable_Segmentation
/**
* Merge two datasets of Weka instances in place
* @param first first (and destination) dataset
* @param second second dataset
*/
public void mergeDataInPlace(Instances first, Instances second)
{
for(int i=0; i<second.numInstances(); i++)
first.add(second.get(i));
}
代码示例来源:origin: fiji/Trainable_Segmentation
/**
* Merge two datasets of Weka instances in place
* @param first first (and destination) dataset
* @param second second dataset
*/
public void mergeDataInPlace(Instances first, Instances second)
{
for(int i=0; i<second.numInstances(); i++)
first.add(second.get(i));
}
代码示例来源:origin: sc.fiji/Trainable_Segmentation
/**
* Create leaf node based on the current split data
*
* @param data pointer to original data
* @param indices indices at this node
*/
public LeafNode(
final Instances data,
ArrayList<Integer> indices)
{
this.probability = new double[ data.numClasses() ];
for(final Integer it : indices)
{
this.probability[ (int) data.get( it.intValue() ).classValue()] ++;
}
// Divide by the number of elements
for(int i=0; i<data.numClasses(); i++)
this.probability[i] /= (double) indices.size();
}
代码示例来源:origin: fiji/Trainable_Segmentation
/**
* Create leaf node based on the current split data
*
* @param data pointer to original data
* @param indices indices at this node
*/
public LeafNode(
final Instances data,
ArrayList<Integer> indices)
{
this.probability = new double[ data.numClasses() ];
for(final Integer it : indices)
{
this.probability[ (int) data.get( it.intValue() ).classValue()] ++;
}
// Divide by the number of elements
for(int i=0; i<data.numClasses(); i++)
this.probability[i] /= (double) indices.size();
}
代码示例来源:origin: dkpro/dkpro-similarity
@Override
public double getSimilarity(JCas jcas1, JCas jcas2, Annotation coveringAnnotation1,
Annotation coveringAnnotation2)
throws SimilarityException
{
// The feature generation needs to have happened before!
DocumentMetaData md = DocumentMetaData.get(jcas1);
int id = Integer.parseInt(md.getDocumentId().substring(md.getDocumentId().indexOf("-") + 1));
System.out.println(id);
Instance testInst = test.get(id - 1);
try {
return filteredClassifier.classifyInstance(testInst);
}
catch (Exception e) {
throw new SimilarityException(e);
}
}
}
代码示例来源:origin: org.dkpro.similarity/dkpro-similarity-algorithms-ml-gpl
@Override
public double getSimilarity(JCas jcas1, JCas jcas2, Annotation coveringAnnotation1,
Annotation coveringAnnotation2)
throws SimilarityException
{
// The feature generation needs to have happened before!
DocumentMetaData md = DocumentMetaData.get(jcas1);
int id = Integer.parseInt(md.getDocumentId().substring(md.getDocumentId().indexOf("-") + 1));
System.out.println(id);
Instance testInst = test.get(id - 1);
try {
return filteredClassifier.classifyInstance(testInst);
}
catch (Exception e) {
throw new SimilarityException(e);
}
}
}
代码示例来源:origin: de.tudarmstadt.ukp.similarity.algorithms/de.tudarmstadt.ukp.similarity.algorithms.ml-asl
@Override
public double getSimilarity(JCas jcas1, JCas jcas2, Annotation coveringAnnotation1,
Annotation coveringAnnotation2)
throws SimilarityException
{
// The feature generation needs to have happened before!
DocumentMetaData md = DocumentMetaData.get(jcas1);
int id = Integer.parseInt(md.getDocumentId().substring(md.getDocumentId().indexOf("-") + 1));
System.out.println(id);
Instance testInst = test.get(id - 1);
try {
return filteredClassifier.classifyInstance(testInst);
}
catch (Exception e) {
throw new SimilarityException(e);
}
}
}
代码示例来源:origin: dkpro/dkpro-similarity
@Override
public double getSimilarity(JCas jcas1, JCas jcas2, Annotation coveringAnnotation1,
Annotation coveringAnnotation2)
throws SimilarityException
{
// The feature generation needs to have happened before!
DocumentMetaData md = DocumentMetaData.get(jcas1);
int id = Integer.parseInt(md.getDocumentId());
System.out.println(id);
Instance testInst = test.get(id - 1);
try {
return filteredClassifier.classifyInstance(testInst);
}
catch (Exception e) {
throw new SimilarityException(e);
}
}
}
代码示例来源:origin: org.dkpro.similarity/dkpro-similarity-algorithms-ml-gpl
@Override
public double getSimilarity(JCas jcas1, JCas jcas2, Annotation coveringAnnotation1,
Annotation coveringAnnotation2)
throws SimilarityException
{
// The feature generation needs to have happened before!
DocumentMetaData md = DocumentMetaData.get(jcas1);
int id = Integer.parseInt(md.getDocumentId());
System.out.println(id);
Instance testInst = test.get(id - 1);
try {
return filteredClassifier.classifyInstance(testInst);
}
catch (Exception e) {
throw new SimilarityException(e);
}
}
}
代码示例来源:origin: de.tudarmstadt.ukp.similarity.algorithms/de.tudarmstadt.ukp.similarity.algorithms.ml-asl
@Override
public double getSimilarity(JCas jcas1, JCas jcas2, Annotation coveringAnnotation1,
Annotation coveringAnnotation2)
throws SimilarityException
{
// The feature generation needs to have happened before!
DocumentMetaData md = DocumentMetaData.get(jcas1);
int id = Integer.parseInt(md.getDocumentId());
System.out.println(id);
Instance testInst = test.get(id - 1);
try {
return filteredClassifier.classifyInstance(testInst);
}
catch (Exception e) {
throw new SimilarityException(e);
}
}
}
代码示例来源:origin: nz.ac.waikato.cms.moa/moa
public Clustering getClusteringResult() {
Clustering clustering = null;
weka.core.Instances wekaInstances= this.instanceConverter.wekaInstances(instances);
try {
clusterer.buildClusterer(wekaInstances);
int numClusters = clusterer.numberOfClusters();
Instances dataset = getDataset(instances.numAttributes(), numClusters);
List<Instance> newInstances = new ArrayList<Instance>() ; //Instances(dataset);
for (int i = 0; i < wekaInstances.numInstances(); i++) {
weka.core.Instance inst = wekaInstances.get(i);
int cnum = clusterer.clusterInstance(inst);
Instance newInst = new DenseInstance(instances.instance(cnum));
newInst.insertAttributeAt(inst.numAttributes());
newInst.setDataset(dataset);
newInst.setClassValue(cnum);
newInstances.add(newInst);
}
clustering = new Clustering(newInstances);
} catch (Exception e) {
e.printStackTrace();
}
instances = null;
return clustering;
}
代码示例来源:origin: Waikato/wekaDeeplearning4j
/** Test getDataSetIterator */
@Test
public void testGetIteratorNominalClass() throws Exception {
final Instances data = DatasetLoader.loadAngerMetaClassification();
final int batchSize = 1;
final DataSetIterator it = this.cteii.getDataSetIterator(data, SEED, batchSize);
Set<Integer> labels = new HashSet<>();
for (int i = 0; i < data.size(); i++) {
Instance inst = data.get(i);
int label = Integer.parseInt(inst.stringValue(data.classIndex()));
final DataSet next = it.next();
int itLabel = next.getLabels().argMax().getInt(0);
Assert.assertEquals(label, itLabel);
labels.add(label);
}
final Set<Integer> collect =
it.getLabels().stream().map(s -> Double.valueOf(s).intValue()).collect(Collectors.toSet());
Assert.assertEquals(2, labels.size());
Assert.assertTrue(labels.containsAll(collect));
Assert.assertTrue(collect.containsAll(labels));
}
代码示例来源:origin: Waikato/wekaDeeplearning4j
protected void checkLayer(Dl4jMlpClassifier clf, Instances iris, String transformationLayerName,
String clfPath) throws Exception {
Instances activationsExpected = clf.getActivationsAtLayer(transformationLayerName, iris);
Dl4jMlpFilter filter = new Dl4jMlpFilter();
filter.setModelFile(new File(clfPath));
filter.setTransformationLayerName(transformationLayerName);
filter.setInputFormat(iris);
Instances activationsActual = Filter.useFilter(iris, filter);
for (int i = 0; i < activationsActual.size(); i++) {
Instance expected = activationsExpected.get(i);
Instance actual = activationsActual.get(i);
for (int j = 0; j < expected.numAttributes(); j++) {
assertEquals(expected.value(j), actual.value(j), 1e-6);
}
}
}
}
代码示例来源:origin: nz.ac.waikato.cms.weka/weka-stable
/**
* tests the data whether the filter can actually handle it.
*
* @param instanceInfo the data to test
* @throws Exception if the test fails
*/
@Override
protected void testInputFormat(Instances instanceInfo) throws Exception {
for (int i = 0; i < getRanges().length; i++) {
Instances newi = new Instances(instanceInfo, 0);
if (instanceInfo.size() > 0) {
newi.add((Instance) instanceInfo.get(0).copy());
}
Range range = getRanges()[i];
range.setUpper(instanceInfo.numAttributes() - 1);
Instances subset = generateSubset(newi, range);
getFilters()[i].setInputFormat(subset);
}
}
代码示例来源:origin: Waikato/wekaDeeplearning4j
/** Test getDataSetIterator */
@Test
public void testGetIteratorNumericClass() throws Exception {
final Instances data = DatasetLoader.loadAngerMeta();
final int batchSize = 1;
final DataSetIterator it = this.cteii.getDataSetIterator(data, SEED, batchSize);
Set<Double> labels = new HashSet<>();
for (int i = 0; i < data.size(); i++) {
Instance inst = data.get(i);
double label = inst.value(data.classIndex());
final DataSet next = it.next();
double itLabel = next.getLabels().getDouble(0);
Assert.assertEquals(label, itLabel, 1e-5);
labels.add(label);
}
}
代码示例来源:origin: Waikato/weka-trunk
/**
* tests the data whether the filter can actually handle it.
*
* @param instanceInfo the data to test
* @throws Exception if the test fails
*/
@Override
protected void testInputFormat(Instances instanceInfo) throws Exception {
for (int i = 0; i < getRanges().length; i++) {
Instances newi = new Instances(instanceInfo, 0);
if (instanceInfo.size() > 0) {
newi.add((Instance) instanceInfo.get(0).copy());
}
Range range = getRanges()[i];
range.setUpper(instanceInfo.numAttributes() - 1);
Instances subset = generateSubset(newi, range);
getFilters()[i].setInputFormat(subset);
}
}
代码示例来源:origin: Waikato/wekaDeeplearning4j
/** Test getDataSetIterator */
@Test
public void testGetIteratorNumericClass() throws Exception {
final Instances data = makeData();
final int batchSize = 1;
final DataSetIterator it = this.cteii.getDataSetIterator(data, SEED, batchSize);
Set<Double> labels = new HashSet<>();
for (int i = 0; i < data.size(); i++) {
Instance inst = data.get(i);
double label = inst.value(data.classIndex());
final DataSet next = it.next();
double itLabel = next.getLabels().getDouble(0);
Assert.assertEquals(label, itLabel, 1e-5);
labels.add(label);
}
}
内容来源于网络,如有侵权,请联系作者删除!