本文整理了Java中weka.core.Instances.size()
方法的一些代码示例,展示了Instances.size()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Instances.size()
方法的具体详情如下:
包路径:weka.core.Instances
类名称:Instances
方法名:size
[英]Returns the number of instances in the dataset.
[中]返回数据集中的实例数。
代码示例来源:origin: nz.ac.waikato.cms.weka/weka-stable
private void assignCanopiesToCanopyCenters() {
// assign canopies to each canopy center
m_clusterCanopies = new ArrayList<long[]>();
for (int i = 0; i < m_canopies.size(); i++) {
Instance inst = m_canopies.instance(i);
try {
long[] assignments = assignCanopies(inst);
m_clusterCanopies.add(assignments);
} catch (Exception ex) {
ex.printStackTrace();
}
}
}
代码示例来源:origin: Waikato/weka-trunk
private void assignCanopiesToCanopyCenters() {
// assign canopies to each canopy center
m_clusterCanopies = new ArrayList<long[]>();
for (int i = 0; i < m_canopies.size(); i++) {
Instance inst = m_canopies.instance(i);
try {
long[] assignments = assignCanopies(inst);
m_clusterCanopies.add(assignments);
} catch (Exception ex) {
ex.printStackTrace();
}
}
}
代码示例来源:origin: nz.ac.waikato.cms.weka/weka-stable
/**
* Print the supplied instances and their canopies
*
* @param dataPoints the instances to print
* @param canopyAssignments the canopy assignments, one assignment array for
* each instance
* @return a string containing the printed assignments
*/
public static String printCanopyAssignments(Instances dataPoints,
List<long[]> canopyAssignments) {
StringBuilder temp = new StringBuilder();
for (int i = 0; i < dataPoints.size(); i++) {
temp.append("Cluster " + i + ": ");
temp.append(dataPoints.instance(i));
if (canopyAssignments != null
&& canopyAssignments.size() == dataPoints.size()) {
long[] assignments = canopyAssignments.get(i);
temp.append(printSingleAssignment(assignments));
}
temp.append("\n");
}
return temp.toString();
}
代码示例来源:origin: Waikato/weka-trunk
/**
* Print the supplied instances and their canopies
*
* @param dataPoints the instances to print
* @param canopyAssignments the canopy assignments, one assignment array for
* each instance
* @return a string containing the printed assignments
*/
public static String printCanopyAssignments(Instances dataPoints,
List<long[]> canopyAssignments) {
StringBuilder temp = new StringBuilder();
for (int i = 0; i < dataPoints.size(); i++) {
temp.append("Cluster " + i + ": ");
temp.append(dataPoints.instance(i));
if (canopyAssignments != null
&& canopyAssignments.size() == dataPoints.size()) {
long[] assignments = canopyAssignments.get(i);
temp.append(printSingleAssignment(assignments));
}
temp.append("\n");
}
return temp.toString();
}
代码示例来源:origin: org.dkpro.tc/dkpro-tc-ml-weka
public List<String> performPrediction(Classifier cl, Instances data) throws Exception
{
StringBuffer classVals = new StringBuffer();
for (int i = 0; i < data.classAttribute().numValues(); i++) {
if (classVals.length() > 0) {
classVals.append(",");
}
classVals.append(data.classAttribute().value(i));
}
// get predictions
List<String> predictions = new ArrayList<String>();
for (int i = 0; i < data.size(); i++) {
Double pred = cl.classifyInstance(data.instance(i));
predictions.add(pred.toString());
}
return predictions;
}
代码示例来源:origin: dkpro/dkpro-tc
public List<String> performPrediction(Classifier cl, Instances data) throws Exception
{
StringBuffer classVals = new StringBuffer();
for (int i = 0; i < data.classAttribute().numValues(); i++) {
if (classVals.length() > 0) {
classVals.append(",");
}
classVals.append(data.classAttribute().value(i));
}
// get predictions
List<String> predictions = new ArrayList<String>();
for (int i = 0; i < data.size(); i++) {
Double pred = cl.classifyInstance(data.instance(i));
predictions.add(pred.toString());
}
return predictions;
}
代码示例来源:origin: org.dkpro.tc/dkpro-tc-ml-weka
public List<String> performPrediction(Classifier cl, Instances data) throws Exception
{
List<String> results = new ArrayList<>();
for (int j = 0; j < data.size(); j++) {
double[] vals = null;
try {
vals = cl.distributionForInstance(data.instance(j));
}
catch (Exception e) {
throw new AnalysisEngineProcessException(e);
}
List<String> outcomes = new ArrayList<String>();
for (int i = 0; i < vals.length; i++) {
if (vals[i] >= threshold) {
String label = data.instance(j).attribute(i).name();
outcomes.add(label);
}
}
results.add(StringUtils.join(outcomes, ","));
}
return results;
}
代码示例来源:origin: dkpro/dkpro-tc
public List<String> performPrediction(Classifier cl, Instances data) throws Exception
{
List<String> results = new ArrayList<>();
for (int j = 0; j < data.size(); j++) {
double[] vals = null;
try {
vals = cl.distributionForInstance(data.instance(j));
}
catch (Exception e) {
throw new AnalysisEngineProcessException(e);
}
List<String> outcomes = new ArrayList<String>();
for (int i = 0; i < vals.length; i++) {
if (vals[i] >= threshold) {
String label = data.instance(j).attribute(i).name();
outcomes.add(label);
}
}
results.add(StringUtils.join(outcomes, ","));
}
return results;
}
代码示例来源:origin: org.dkpro.tc/dkpro-tc-ml-weka
public Instances getPredictionInstancesSingleLabel(Instances testData, Classifier cl)
throws Exception
{
StringBuffer classVals = new StringBuffer();
for (int i = 0; i < testData.classAttribute().numValues(); i++) {
if (classVals.length() > 0) {
classVals.append(",");
}
classVals.append(testData.classAttribute().value(i));
}
// get predictions
List<Double> labelPredictionList = new ArrayList<Double>();
for (int i = 0; i < testData.size(); i++) {
labelPredictionList.add(cl.classifyInstance(testData.instance(i)));
}
// add an attribute with the predicted values at the end off the attributes
Add filter = new Add();
filter.setAttributeName(WekaTestTask.PREDICTION_CLASS_LABEL_NAME);
if (classVals.length() > 0) {
filter.setAttributeType(new SelectedTag(Attribute.NOMINAL, Add.TAGS_TYPE));
filter.setNominalLabels(classVals.toString());
}
filter.setInputFormat(testData);
testData = Filter.useFilter(testData, filter);
// fill predicted values for each instance
for (int i = 0; i < labelPredictionList.size(); i++) {
testData.instance(i).setValue(testData.classIndex() + 1, labelPredictionList.get(i));
}
return testData;
}
代码示例来源:origin: dkpro/dkpro-tc
public Instances getPredictionInstancesSingleLabel(Instances testData, Classifier cl)
throws Exception
{
StringBuffer classVals = new StringBuffer();
for (int i = 0; i < testData.classAttribute().numValues(); i++) {
if (classVals.length() > 0) {
classVals.append(",");
}
classVals.append(testData.classAttribute().value(i));
}
// get predictions
List<Double> labelPredictionList = new ArrayList<Double>();
for (int i = 0; i < testData.size(); i++) {
labelPredictionList.add(cl.classifyInstance(testData.instance(i)));
}
// add an attribute with the predicted values at the end off the attributes
Add filter = new Add();
filter.setAttributeName(WekaTestTask.PREDICTION_CLASS_LABEL_NAME);
if (classVals.length() > 0) {
filter.setAttributeType(new SelectedTag(Attribute.NOMINAL, Add.TAGS_TYPE));
filter.setNominalLabels(classVals.toString());
}
filter.setInputFormat(testData);
testData = Filter.useFilter(testData, filter);
// fill predicted values for each instance
for (int i = 0; i < labelPredictionList.size(); i++) {
testData.instance(i).setValue(testData.classIndex() + 1, labelPredictionList.get(i));
}
return testData;
}
代码示例来源:origin: nz.ac.waikato.cms.weka/weka-stable
@Override
public double[] distributionForInstance(Instance instance) throws Exception {
if (m_canopies == null || m_canopies.size() == 0) {
throw new Exception("No canopies available to cluster with!");
}
double[] d = new double[numberOfClusters()];
if (m_missingValuesReplacer != null) {
m_missingValuesReplacer.input(instance);
instance = m_missingValuesReplacer.output();
}
for (int i = 0; i < m_canopies.numInstances(); i++) {
double distance = m_distanceFunction.distance(instance,
m_canopies.instance(i));
d[i] = 1.0 / (1.0 + distance);
}
Utils.normalize(d);
return d;
}
代码示例来源:origin: Waikato/weka-trunk
@Override
public double[] distributionForInstance(Instance instance) throws Exception {
if (m_canopies == null || m_canopies.size() == 0) {
throw new Exception("No canopies available to cluster with!");
}
double[] d = new double[numberOfClusters()];
if (m_missingValuesReplacer != null) {
m_missingValuesReplacer.input(instance);
instance = m_missingValuesReplacer.output();
}
for (int i = 0; i < m_canopies.numInstances(); i++) {
double distance = m_distanceFunction.distance(instance,
m_canopies.instance(i));
d[i] = 1.0 / (1.0 + distance);
}
Utils.normalize(d);
return d;
}
代码示例来源:origin: Waikato/wekaDeeplearning4j
/** Test getDataSetIterator */
@Test
public void testGetIteratorNominalClass() throws Exception {
final Instances data = DatasetLoader.loadAngerMetaClassification();
final int batchSize = 1;
final DataSetIterator it = this.cteii.getDataSetIterator(data, SEED, batchSize);
Set<Integer> labels = new HashSet<>();
for (int i = 0; i < data.size(); i++) {
Instance inst = data.get(i);
int label = Integer.parseInt(inst.stringValue(data.classIndex()));
final DataSet next = it.next();
int itLabel = next.getLabels().argMax().getInt(0);
Assert.assertEquals(label, itLabel);
labels.add(label);
}
final Set<Integer> collect =
it.getLabels().stream().map(s -> Double.valueOf(s).intValue()).collect(Collectors.toSet());
Assert.assertEquals(2, labels.size());
Assert.assertTrue(labels.containsAll(collect));
Assert.assertTrue(collect.containsAll(labels));
}
代码示例来源:origin: nz.ac.waikato.cms.weka/weka-stable
double[] densities = new double[m_canopies.size()];
for (int i = 0; i < m_canopies.numInstances(); i++) {
double[] density = m_canopyT2Density.get(i);
代码示例来源:origin: Waikato/wekaDeeplearning4j
/** Test getDataSetIterator */
@Test
public void testGetIteratorNumericClass() throws Exception {
final Instances data = DatasetLoader.loadAngerMeta();
final int batchSize = 1;
final DataSetIterator it = this.cteii.getDataSetIterator(data, SEED, batchSize);
Set<Double> labels = new HashSet<>();
for (int i = 0; i < data.size(); i++) {
Instance inst = data.get(i);
double label = inst.value(data.classIndex());
final DataSet next = it.next();
double itLabel = next.getLabels().getDouble(0);
Assert.assertEquals(label, itLabel, 1e-5);
labels.add(label);
}
}
代码示例来源:origin: nz.ac.waikato.cms.weka/weka-stable
/**
* tests the data whether the filter can actually handle it.
*
* @param instanceInfo the data to test
* @throws Exception if the test fails
*/
@Override
protected void testInputFormat(Instances instanceInfo) throws Exception {
for (int i = 0; i < getRanges().length; i++) {
Instances newi = new Instances(instanceInfo, 0);
if (instanceInfo.size() > 0) {
newi.add((Instance) instanceInfo.get(0).copy());
}
Range range = getRanges()[i];
range.setUpper(instanceInfo.numAttributes() - 1);
Instances subset = generateSubset(newi, range);
getFilters()[i].setInputFormat(subset);
}
}
代码示例来源:origin: Waikato/weka-trunk
/**
* tests the data whether the filter can actually handle it.
*
* @param instanceInfo the data to test
* @throws Exception if the test fails
*/
@Override
protected void testInputFormat(Instances instanceInfo) throws Exception {
for (int i = 0; i < getRanges().length; i++) {
Instances newi = new Instances(instanceInfo, 0);
if (instanceInfo.size() > 0) {
newi.add((Instance) instanceInfo.get(0).copy());
}
Range range = getRanges()[i];
range.setUpper(instanceInfo.numAttributes() - 1);
Instances subset = generateSubset(newi, range);
getFilters()[i].setInputFormat(subset);
}
}
代码示例来源:origin: Waikato/wekaDeeplearning4j
for (int i = 0; i < mnistMiniArff.size(); i++) {
Instance inst = mnistMiniArff.get(i);
int instLabel = Integer.parseInt(inst.stringValue(inst.numAttributes() - 1));
代码示例来源:origin: Waikato/wekaDeeplearning4j
/** Test getDataSetIterator */
@Test
public void testGetIteratorNumericClass() throws Exception {
final Instances data = makeData();
final int batchSize = 1;
final DataSetIterator it = this.cteii.getDataSetIterator(data, SEED, batchSize);
Set<Double> labels = new HashSet<>();
for (int i = 0; i < data.size(); i++) {
Instance inst = data.get(i);
double label = inst.value(data.classIndex());
final DataSet next = it.next();
double itLabel = next.getLabels().getDouble(0);
Assert.assertEquals(label, itLabel, 1e-5);
labels.add(label);
}
}
代码示例来源:origin: Waikato/wekaDeeplearning4j
protected void checkLayer(Dl4jMlpClassifier clf, Instances iris, String transformationLayerName,
String clfPath) throws Exception {
Instances activationsExpected = clf.getActivationsAtLayer(transformationLayerName, iris);
Dl4jMlpFilter filter = new Dl4jMlpFilter();
filter.setModelFile(new File(clfPath));
filter.setTransformationLayerName(transformationLayerName);
filter.setInputFormat(iris);
Instances activationsActual = Filter.useFilter(iris, filter);
for (int i = 0; i < activationsActual.size(); i++) {
Instance expected = activationsExpected.get(i);
Instance actual = activationsActual.get(i);
for (int j = 0; j < expected.numAttributes(); j++) {
assertEquals(expected.value(j), actual.value(j), 1e-6);
}
}
}
}
内容来源于网络,如有侵权,请联系作者删除!