本文整理了Java中eu.amidst.core.variables.Variables.getNumberOfVars()
方法的一些代码示例,展示了Variables.getNumberOfVars()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Variables.getNumberOfVars()
方法的具体详情如下:
包路径:eu.amidst.core.variables.Variables
类名称:Variables
方法名:getNumberOfVars
暂无
代码示例来源:origin: amidst/toolbox
/**
* Constructor from a list of attributes.
* The default parameters are used: the class variable is the last one and the
* diagonal flag is set to false (predictive variables are NOT independent).
* @param attributes list of attributes of the classifier (i.e. its variables)
* @throws WrongConfigurationException
*/
public BayesianLinearRegression(Attributes attributes) throws WrongConfigurationException {
super(attributes);
classVar = vars.getListOfVariables().get(vars.getNumberOfVars()-1);
this.diagonal = false;
}
代码示例来源:origin: amidst/toolbox
/**
* Constructor of a classifier which is initialized with the default arguments:
* the last variable in attributes is the class variable and importance sampling
* is the inference algorithm for making the predictions.
* @param attributes list of attributes of the classifier (i.e. its variables)
* @throws WrongConfigurationException is thrown when the attributes passed are not suitable
* for such classifier
*/
protected Classifier(Attributes attributes) throws WrongConfigurationException {
super(attributes);
classVar = vars.getListOfVariables().get(vars.getNumberOfVars()-1);
inferenceAlgoPredict = new ImportanceSampling();
}
代码示例来源:origin: amidst/toolbox
@Override
public boolean isValidConfiguration(){
boolean isValid = true;
long numReal = vars.getListOfVariables().stream()
.filter( v -> v.getStateSpaceTypeEnum().equals(StateSpaceTypeEnum.REAL))
.count();
long numFinite = vars.getListOfVariables().stream()
.filter( v -> v.getStateSpaceTypeEnum().equals(StateSpaceTypeEnum.FINITE_SET))
.count();
if(numFinite != 1 || numReal != vars.getNumberOfVars()-1) {
isValid = false;
String errorMsg = "Invalid configuration: wrong number types of variables domains. It should contain 1 discrete variable and the rest shoud be real";
this.setErrorMessage(errorMsg);
}
return isValid;
}
代码示例来源:origin: amidst/toolbox
public boolean isValidConfiguration(){
boolean isValid = true;
long numReal = vars.getListOfVariables().stream()
.filter( v -> v.getStateSpaceTypeEnum().equals(StateSpaceTypeEnum.REAL))
.count();
long numFinite = vars.getListOfVariables().stream()
.filter( v -> v.getStateSpaceTypeEnum().equals(StateSpaceTypeEnum.FINITE_SET))
.count();
if(numFinite != 1 || numReal != vars.getNumberOfVars()-1) {
isValid = false;
String errorMsg = "Invalid configuration: wrong number types of variables domains. It should contain 1 discrete variable and the rest shoud be real";
this.setErrorMessage(errorMsg);
}
return isValid;
}
代码示例来源:origin: amidst/toolbox
public static void main(String[] args) throws Exception {
// load the true Bayesian network
BayesianNetwork originalBnet = BayesianNetworkLoader.loadFromFile(args[0]);
System.out.println("\n Network \n " + args[0]);
System.out.println("\n Number of variables \n " + originalBnet.getDAG().getVariables().getNumberOfVars());
//Sampling from the input BN
BayesianNetworkSampler sampler = new BayesianNetworkSampler(originalBnet);
sampler.setSeed(0);
// Defines the size of the data to be generated from the input BN
int sizeData = Integer.parseInt(args[1]);
System.out.println("\n Sampling and saving the data... \n ");
DataStream<DataInstance> data = sampler.sampleToDataStream(sizeData);
DataStreamWriter.writeDataToFile(data, "./data.arff");
}
代码示例来源:origin: amidst/toolbox
public static void main(String[] args) throws Exception {
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataFlink<DataInstance> dataFlink = DataFlinkLoader.loadDataFromFile(env, "./data.arff", false);
DAG dag = SetBNwithHidden.getHiddenNaiveBayesStructure(dataFlink);
BayesianNetwork bnet = new BayesianNetwork(dag);
System.out.println("\n Number of variables \n " + bnet.getDAG().getVariables().getNumberOfVars());
System.out.println(dag.toString());
BayesianNetworkWriter.save(bnet, "./BNHiddenExample.bn");
}
代码示例来源:origin: amidst/toolbox
System.out.println("\n Number of variables \n " + bn.getDAG().getVariables().getNumberOfVars());
System.out.println(dag.toString());
代码示例来源:origin: amidst/toolbox
@Override
protected void buildDAG() {
int numPredictiveAtts = vars.getNumberOfVars()-1;
代码示例来源:origin: amidst/toolbox
/**
* Sets the Hugin nodes from the AMIDST variables.
* @param amidstBN the Bayesian network model in AMIDST format.
* @throws ExceptionHugin
*/
private void setNodes(BayesianNetwork amidstBN) throws ExceptionHugin {
Variables amidstVars = amidstBN.getVariables();
int size = amidstVars.getNumberOfVars();
//Hugin always inserts variables at position 0, i.e, for an order A,B,C, it stores C,B,A
//A reverse order of the variables is needed instead.
for(int i=1;i<=size;i++){
Variable amidstVar = amidstVars.getVariableById(size-i);
if(amidstVar.isMultinomial()){
LabelledDCNode n = new LabelledDCNode(this.huginBN);
n.setName(amidstVar.getName());
n.setNumberOfStates(amidstVar.getNumberOfStates());
n.setLabel(amidstVar.getName());
for (int j=0;j<n.getNumberOfStates();j++){
String stateName = ((FiniteStateSpace)amidstVar.getStateSpaceType()).getStatesName(j);
n.setStateLabel(j, stateName);
}
} else if (amidstVar.isNormal()) {
ContinuousChanceNode c = new ContinuousChanceNode(this.huginBN);
c.setName(amidstVar.getName());
} else {
throw new IllegalArgumentException("Unrecognized DistributionType:" + amidstVar.getDistributionTypeEnum().toString());
}
}
}
内容来源于网络,如有侵权,请联系作者删除!