本文整理了Java中eu.amidst.core.variables.Variables.setAttributes()
方法的一些代码示例,展示了Variables.setAttributes()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Variables.setAttributes()
方法的具体详情如下:
包路径:eu.amidst.core.variables.Variables
类名称:Variables
方法名:setAttributes
暂无
代码示例来源:origin: amidst/toolbox
try {
dagLearned = (BNConverterToAMIDST.convertToAmidst(huginNetwork)).getDAG();
dagLearned.getVariables().setAttributes(dataStream.getAttributes());
} catch (ExceptionHugin exceptionHugin) {
System.out.println("ParallelTan LearnDAG Error 6");
代码示例来源:origin: amidst/toolbox
public static void baseTest(ExecutionEnvironment env, DataStream<DataInstance> data, BayesianNetwork network, int batchSize, double error) throws IOException, ClassNotFoundException {
DataStreamWriter.writeDataToFile(data, "./datasets/simulated/tmp.arff");
DataFlink<DataInstance> dataFlink = DataFlinkLoader.loadDataFromFile(env, "./datasets/simulated/tmp.arff", false);
network.getDAG().getVariables().setAttributes(dataFlink.getAttributes());
//Structure learning is excluded from the test, i.e., we use directly the initial Asia network structure
// and just learn then test the parameter learning
//Parameter Learning
dVMP parallelVB = new dVMP();
parallelVB.setOutput(true);
parallelVB.setMaximumGlobalIterations(10);
parallelVB.setSeed(5);
parallelVB.setBatchSize(batchSize);
parallelVB.setLocalThreshold(0.001);
parallelVB.setGlobalThreshold(0.01);
parallelVB.setMaximumLocalIterations(100);
parallelVB.setMaximumGlobalIterations(100);
parallelVB.setDAG(network.getDAG());
parallelVB.initLearning();
parallelVB.updateModel(dataFlink);
BayesianNetwork bnet = parallelVB.getLearntBayesianNetwork();
//Check if the probability distributions of each node
for (Variable var : network.getVariables()) {
if (Main.VERBOSE) System.out.println("\n------ Variable " + var.getName() + " ------");
if (Main.VERBOSE) System.out.println("\nTrue distribution:\n" + network.getConditionalDistribution(var));
if (Main.VERBOSE) System.out.println("\nLearned distribution:\n" + bnet.getConditionalDistribution(var));
Assert.assertTrue(bnet.getConditionalDistribution(var).equalDist(network.getConditionalDistribution(var), error));
}
//Or check directly if the true and learned networks are equals
Assert.assertTrue(bnet.equalBNs(network, error));
}
代码示例来源:origin: amidst/toolbox
dagLearned.getVariables().setAttributes(dataStream.getAttributes());
return dagLearned;
} catch (ExceptionHugin exceptionHugin) {
内容来源于网络,如有侵权,请联系作者删除!