本文整理了Java中Jama.Matrix.times()
方法的一些代码示例,展示了Matrix.times()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Matrix.times()
方法的具体详情如下:
包路径:Jama.Matrix
类名称:Matrix
方法名:times
暂无
代码示例来源:origin: marytts/marytts
public double[][] getDataProjected(Matrix data, boolean debug) {
// Project the original data set
Matrix dataProjected;
dataProjected = PC.transpose().times(data);
if (debug) {
System.out.println("Data projected:");
dataProjected.print(dataProjected.getRowDimension(), 3);
}
return dataProjected.getArray();
}
代码示例来源:origin: marytts/marytts
int col = data.getColumnDimension();
Matrix B = new Matrix(row, col + 1);
Matrix ones = new Matrix(row, 1);
for (int i = 0; i < row; i++)
ones.set(i, 0, 1.0);
Matrix r = data.times(b).minus(indVar);
residuals = r.getColumnPackedCopy();
Matrix p = data.times(b);
predictedValues = p.getColumnPackedCopy();
for (int i = 0; i < predictedValues.length; i++)
代码示例来源:origin: h2oai/h2o-3
Matrix x_r = new Matrix(xxchol.getL()).transpose();
x_r = x_r.times(Math.sqrt(nobs));
Matrix yt = new Matrix(model._output._archetypes_raw.getY(true));
QRDecomposition yt_qr = new QRDecomposition(yt);
Matrix rrmul = x_r.times(yt_r.transpose());
SingularValueDecomposition rrsvd = new SingularValueDecomposition(rrmul); // RS' = U \Sigma V'
double[] sval = rrsvd.getSingularValues(); // get singular values as double array
Matrix eigvec = yt_qr.getQ().times(rrsvd.getV());
代码示例来源:origin: marytts/marytts
covariance = data.times(data.transpose());
covariance = covariance.times(1.0 / (N - 1));
if (debug) {
System.out.println("Covariance");
d[i][j] = pc.getV().get(i, k);
PC = new Matrix(d);
if (debug) {
System.out.println("PC:");
Matrix projectedData = PC.transpose().times(data);
Matrix covProjectedData = projectedData.times(projectedData.transpose());
代码示例来源:origin: marytts/marytts
int col = data.getColumnDimension();
Matrix B = new Matrix(row, col + 1);
Matrix ones = new Matrix(row, 1);
for (int i = 0; i < row; i++)
ones.set(i, 0, 1.0);
Matrix r = data.times(b).minus(indVar);
residuals = r.getColumnPackedCopy();
Matrix p = data.times(b);
predictedValues = p.getColumnPackedCopy();
for (int i = 0; i < predictedValues.length; i++)
代码示例来源:origin: marytts/marytts
public double[][] getDataProjected(Matrix data, boolean debug) {
// Project the original data set
Matrix dataProjected;
dataProjected = PC.transpose().times(data);
if (debug) {
System.out.println("Data projected:");
dataProjected.print(dataProjected.getRowDimension(), 3);
}
return dataProjected.getArray();
}
代码示例来源:origin: marytts/marytts
covariance = data.times(data.transpose());
covariance = covariance.times(1.0 / (N - 1));
if (debug) {
System.out.println("Covariance");
d[i][j] = pc.getV().get(i, k);
PC = new Matrix(d);
if (debug) {
System.out.println("PC:");
Matrix projectedData = PC.transpose().times(data);
Matrix covProjectedData = projectedData.times(projectedData.transpose());
代码示例来源:origin: stackoverflow.com
double[][] array = {{1.,2.,3},{1.,2.,3.},{1.,2.,3.}};
Matrix a = new Matrix(array);
Matrix b = new Matrix(new double[]{1., 1., 1.}, 1);
Matrix c = b.times(a);
System.out.println(Arrays.deepToString(c.getArray()));
代码示例来源:origin: marytts/marytts
Matrix Y = data.transpose();
Y = Y.times(1.0 / Math.sqrt(N - 1));
Matrix projectedData = PC.transpose().times(data);
Matrix covProjectedData = projectedData.times(projectedData.transpose());
代码示例来源:origin: percyliang/fig
public MultGaussianSuffStats(double[] x) {
sum = new Matrix(x, x.length);
outerproducts = sum.times(sum.transpose());
n = 1;
}
public MultGaussianSuffStats(MultGaussianSuffStats stats) {
代码示例来源:origin: stackoverflow.com
double[][] array = {{1.,2.,3},{4.,5.,6.},{7.,8.,10.}};
Matrix A = new Matrix(array);
Matrix b = Matrix.random(3,1);
Matrix x = A.solve(b);
Matrix Residual = A.times(x).minus(b);
代码示例来源:origin: marytts/marytts
Matrix Y = data.transpose();
Y = Y.times(1.0 / Math.sqrt(N - 1));
Matrix projectedData = PC.transpose().times(data);
Matrix covProjectedData = projectedData.times(projectedData.transpose());
代码示例来源:origin: bcdev/beam
/**
* @param pt point
* @return the square of the Mahalanobis distance of the point from center of gravity
*/
public double distancesqu(double[] pt) {
double[] df = new double[pt.length];
for (int k = 0; k < pt.length; k++){
df[k] = pt[k] - this.cog[k];
}
Matrix dfm = new Matrix(df, pt.length);
return Math.abs(dfm.transpose().times(this.covinv.times(dfm)).getArray()[0][0]);
}
代码示例来源:origin: pranab/chombo
/**
* @param a
* @param b
* @return
*/
public static double[][] multiplyMatrix(double[][] a, double[][] b) {
Matrix am = new Matrix(a);
Matrix bm = new Matrix(b);
Matrix c = am.times(bm);
return c.getArray();
}
代码示例来源:origin: org.openimaj/sandbox
static Matrix computeEssentialMatrix(CameraIntrinsics ci, Matrix F) {
return ci.calibrationMatrix.transpose().times(F).times(ci.calibrationMatrix);
}
代码示例来源:origin: openimaj/openimaj
@Override
public double[] predict(double[] data) {
final double[][] corrected = new double[][] { new double[data.length + 1] };
corrected[0][0] = 1;
System.arraycopy(data, 0, corrected[0], 1, data.length);
final Matrix x = new Matrix(corrected);
return x.times(this.weights).transpose().getArray()[0];
}
代码示例来源:origin: openimaj/openimaj
/**
* Helper function which adds the constant component to x and returns
* predicted values for y, one per row
*
* @param x
* @return predicted y
*/
public Matrix predict(Matrix x) {
x = new Matrix(appendConstant(x.getArray()));
return x.times(this.weights);
}
代码示例来源:origin: openimaj/openimaj
static Matrix computeEssentialMatrix(CameraIntrinsics ci, Matrix F) {
return ci.calibrationMatrix.transpose().times(F).times(ci.calibrationMatrix);
}
代码示例来源:origin: openimaj/openimaj
/**
* Compute the low rank estimate of the given vector
*
* @param in
* the vector
* @return the low-rank projection of the vector
*/
public double[] project(double[] in) {
return W.times(new Matrix(new double[][] { in }).transpose()).getColumnPackedCopy();
}
代码示例来源:origin: openimaj/openimaj
private double[] project(double[] vector) {
final Matrix vec = new Matrix(1, vector.length);
final double[][] vecarr = vec.getArray();
for (int i = 0; i < vector.length; i++)
vecarr[0][i] = vector[i] - mean[i];
return vec.times(basis).getColumnPackedCopy();
}
内容来源于网络,如有侵权,请联系作者删除!