本文整理了Java中Jama.Matrix.plus()
方法的一些代码示例,展示了Matrix.plus()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Matrix.plus()
方法的具体详情如下:
包路径:Jama.Matrix
类名称:Matrix
方法名:plus
暂无
代码示例来源:origin: percyliang/fig
public void add(SuffStats _stats) { // Add several data points
MultGaussianSuffStats stats = (MultGaussianSuffStats)_stats;
// TODO : in place for efficiency
sum = sum.plus(stats.sum);
outerproducts = outerproducts.plus(stats.outerproducts);
n += stats.n;
}
public void sub(double[] _x) { // Remove a data point
代码示例来源:origin: net.sf.meka/meka
/**
* Update - Carry out one epoch of CD, update W.
* We use dW_ to manage momentum.
* <br>
* TODO weight decay SHOULD NOT BE APPLIED TO BIASES
* @param X X
*/
public void update(Matrix X) {
Matrix CD = epoch(X);
Matrix dW = (CD.minusEquals(this.W.times(COST))).timesEquals(LEARNING_RATE); // with COST
this.W.plusEquals(dW.plus(this.dW_.timesEquals(MOMENTUM))); // with MOMENTUM.
this.dW_ = dW; // for the next update
}
代码示例来源:origin: stackoverflow.com
Matrix x,y,z;
x=Matrix.getMatrix(3,3);
y=Matrix.getMatrix(3,3);
z=x.plus(y);
z.print();
代码示例来源:origin: Waikato/meka
/**
* Update - Carry out one epoch of CD, update W.
* We use dW_ to manage momentum.
* <br>
* TODO weight decay SHOULD NOT BE APPLIED TO BIASES
* @param X X
*/
public void update(Matrix X) {
Matrix CD = epoch(X);
Matrix dW = (CD.minusEquals(this.W.times(COST))).timesEquals(LEARNING_RATE); // with COST
this.W.plusEquals(dW.plus(this.dW_.timesEquals(MOMENTUM))); // with MOMENTUM.
this.dW_ = dW; // for the next update
}
代码示例来源:origin: percyliang/fig
public void add(double[] _x) { // Add a data point
Matrix x = new Matrix(_x, _x.length);
// TODO : in place for efficiency
sum = sum.plus(x);
outerproducts = outerproducts.plus(x.times(x.transpose()));
n++;
}
public void add(SuffStats _stats) { // Add several data points
代码示例来源:origin: net.sf.meka/meka
/**
* Update - Carry out one epoch of CD, update W.
* <br>
* TODO combine with above fn.
* @param X X
* @param s multiply the gradient by this scalar
*/
public void update(Matrix X, double s) {
Matrix CD = epoch(X);
Matrix dW = (CD.minusEquals(this.W.times(COST))).timesEquals(LEARNING_RATE); // with COST
dW = dW.times(s); // *scaling factor
this.W.plusEquals(dW.plus(this.dW_.timesEquals(MOMENTUM))); // with MOMENTUM.
this.dW_ = dW; // for the next update
}
代码示例来源:origin: lessthanoptimal/Java-Matrix-Benchmark
@Override
public long process(BenchmarkMatrix[] inputs, BenchmarkMatrix[] outputs, long numTrials) {
Matrix matA = inputs[0].getOriginal();
Matrix matB = inputs[1].getOriginal();
Matrix result = null;
long prev = System.nanoTime();
for( long i = 0; i < numTrials; i++ ) {
result = matA.plus(matB);
}
long elapsed = System.nanoTime()-prev;
if( outputs != null ) {
outputs[0] = new JamaBenchmarkMatrix(result);
}
return elapsed;
}
}
代码示例来源:origin: Waikato/meka
/**
* Update - Carry out one epoch of CD, update W.
* <br>
* TODO combine with above fn.
* @param X X
* @param s multiply the gradient by this scalar
*/
public void update(Matrix X, double s) {
Matrix CD = epoch(X);
Matrix dW = (CD.minusEquals(this.W.times(COST))).timesEquals(LEARNING_RATE); // with COST
dW = dW.times(s); // *scaling factor
this.W.plusEquals(dW.plus(this.dW_.timesEquals(MOMENTUM))); // with MOMENTUM.
this.dW_ = dW; // for the next update
}
代码示例来源:origin: openimaj/openimaj
@Override
public double[] sample(Random rng) {
final Matrix vec = new Matrix(N, 1);
for (int i = 0; i < N; i++)
vec.set(i, 0, rng.nextGaussian());
final Matrix result = this.mean.plus(chol.times(vec).transpose());
return result.getArray()[0];
}
代码示例来源:origin: us.ihmc/IHMCRoboticsToolkit
public LinearDynamicSystem addFullStateFeedback(Matrix matrixK) {
if (matrixB == null) {
throw new RuntimeException("Matrix B must not be null for addFullStateFeedback!");
}
Matrix newMatrixA = matrixA.plus(matrixB.times(matrixK.times(-1.0)));
Matrix newMatrixB = matrixB.copy();
Matrix newMatrixC = null,
newMatrixD = null;
if (matrixC != null) {
newMatrixC = matrixC;
if (matrixD != null) {
newMatrixC = matrixC.plus(matrixD.times(matrixK.times(-1.0)));
newMatrixD = matrixD.copy();
}
}
return new LinearDynamicSystem(newMatrixA, newMatrixB, newMatrixC, newMatrixD);
}
代码示例来源:origin: us.ihmc/ihmc-robotics-toolkit
public LinearDynamicSystem addFullStateFeedback(Matrix matrixK) {
if (matrixB == null) {
throw new RuntimeException("Matrix B must not be null for addFullStateFeedback!");
}
Matrix newMatrixA = matrixA.plus(matrixB.times(matrixK.times(-1.0)));
Matrix newMatrixB = matrixB.copy();
Matrix newMatrixC = null,
newMatrixD = null;
if (matrixC != null) {
newMatrixC = matrixC;
if (matrixD != null) {
newMatrixC = matrixC.plus(matrixD.times(matrixK.times(-1.0)));
newMatrixD = matrixD.copy();
}
}
return new LinearDynamicSystem(newMatrixA, newMatrixB, newMatrixC, newMatrixD);
}
代码示例来源:origin: openimaj/openimaj
Matrix calcShape3D(Matrix plocal) {
assert ((plocal.getRowDimension() == _E.getColumnDimension()) && (plocal
.getColumnDimension() == 1));
Matrix s = _M.plus(_V.times(plocal));
return s;
}
代码示例来源:origin: org.openimaj/FaceTracker
Matrix calcShape3D(Matrix plocal) {
assert ((plocal.getRowDimension() == _E.getColumnDimension()) && (plocal
.getColumnDimension() == 1));
Matrix s = _M.plus(_V.times(plocal));
return s;
}
代码示例来源:origin: org.ujmp/ujmp-jama
public Matrix plus(Matrix m) {
if (m instanceof JamaDenseDoubleMatrix2D) {
Matrix result = new JamaDenseDoubleMatrix2D(matrix.plus(((JamaDenseDoubleMatrix2D) m).matrix));
MapMatrix<String, Object> a = getMetaData();
if (a != null) {
result.setMetaData(a.clone());
}
return result;
} else {
return super.plus(m);
}
}
代码示例来源:origin: ujmp/universal-java-matrix-package
public Matrix plus(Matrix m) {
if (m instanceof JamaDenseDoubleMatrix2D) {
Matrix result = new JamaDenseDoubleMatrix2D(matrix.plus(((JamaDenseDoubleMatrix2D) m).matrix));
MapMatrix<String, Object> a = getMetaData();
if (a != null) {
result.setMetaData(a.clone());
}
return result;
} else {
return super.plus(m);
}
}
代码示例来源:origin: us.ihmc/ihmc-robotics-toolkit
public double[][] simulateInitialConditions(double[] initialConditions, double stepSize, int numTicks) {
int order = matrixA.getRowDimension();
if (initialConditions.length != order) {
throw new RuntimeException("initialConditions.length != order");
}
// Just use Euler integrations for now:
double[][] ret = new double[numTicks][order];
Matrix state = new Matrix(order, 1);
copyArray(initialConditions, state);
for (int i = 0; i < numTicks; i++) {
copyArray(state, ret[i]);
Matrix aTimesX = matrixA.times(state);
Matrix aTimesXTimesStepSize = aTimesX.times(stepSize);
state = state.plus(aTimesXTimesStepSize);
}
return ret;
}
代码示例来源:origin: openimaj/openimaj
@Override
public double[] sample(Random rng) {
final int N = mean.getColumnDimension();
final Matrix chol = getCovariance().chol().getL();
final Matrix vec = new Matrix(N, 1);
for (int i = 0; i < N; i++)
vec.set(i, 0, rng.nextGaussian());
final Matrix result = this.mean.plus(chol.times(vec).transpose());
return result.getArray()[0];
}
代码示例来源:origin: sc.fiji/TrackMate_
/**
* Runs the prediction step of the Kalman filter and returns the state
* predicted by the evolution process.
*
* @return a new <code>double[]</code> of 6 elements containing the
* predicted state: <code>x, y, z, vx, vy, vz</code> with velocity
* in <code>length/frame</code> units.
*
*/
public double[] predict()
{
Xp = A.times( X );
P = A.times( P.times( A.transpose() ) ).plus( Q );
return Xp.getColumnPackedCopy();
}
代码示例来源:origin: fiji/TrackMate
/**
* Runs the prediction step of the Kalman filter and returns the state
* predicted by the evolution process.
*
* @return a new <code>double[]</code> of 6 elements containing the
* predicted state: <code>x, y, z, vx, vy, vz</code> with velocity
* in <code>length/frame</code> units.
*
*/
public double[] predict()
{
Xp = A.times( X );
P = A.times( P.times( A.transpose() ) ).plus( Q );
return Xp.getColumnPackedCopy();
}
代码示例来源:origin: openimaj/openimaj
@Override
protected void mstep(EMGMM gmm, GaussianMixtureModelEM learner, Matrix X, Matrix responsibilities,
Matrix weightedXsum,
double[] norm)
{
final Matrix avgX2uw = responsibilities.transpose().times(X.arrayTimes(X));
for (int i = 0; i < gmm.gaussians.length; i++) {
final Matrix weightedXsumi = new Matrix(new double[][] { weightedXsum.getArray()[i] });
final Matrix avgX2uwi = new Matrix(new double[][] { avgX2uw.getArray()[i] });
final Matrix avgX2 = avgX2uwi.times(norm[i]);
final Matrix mu = ((AbstractMultivariateGaussian) gmm.gaussians[i]).mean;
final Matrix avgMeans2 = MatrixUtils.pow(mu, 2);
final Matrix avgXmeans = mu.arrayTimes(weightedXsumi).times(norm[i]);
final Matrix covar = MatrixUtils.plus(avgX2.minus(avgXmeans.times(2)).plus(avgMeans2),
learner.minCovar);
((DiagonalMultivariateGaussian) gmm.gaussians[i]).variance = covar.getArray()[0];
}
}
},
内容来源于网络,如有侵权,请联系作者删除!