本文整理了Java中Jama.Matrix.arrayTimes()
方法的一些代码示例,展示了Matrix.arrayTimes()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Matrix.arrayTimes()
方法的具体详情如下:
包路径:Jama.Matrix
类名称:Matrix
方法名:arrayTimes
暂无
代码示例来源:origin: stackoverflow.com
public class CosineSimilarity extends AbstractSimilarity {
@Override
protected double computeSimilarity(Matrix sourceDoc, Matrix targetDoc) {
double dotProduct = sourceDoc.arrayTimes(targetDoc).norm1();
double eucledianDist = sourceDoc.normF() * targetDoc.normF();
return dotProduct / eucledianDist;
}
}
代码示例来源:origin: gov.nist.math/jama
B = Matrix.random(A.getRowDimension(),A.getColumnDimension());
try {
S = A.arrayTimes(S);
errorCount = try_failure(errorCount,"arrayTimes conformance check... ","nonconformance not raised");
} catch ( IllegalArgumentException e ) {
try_success("arrayTimes conformance check... ","");
C = A.arrayTimes(B);
try {
check(C.arrayRightDivideEquals(B),A);
代码示例来源:origin: net.sf.meka/meka
/**
* Multiply - multiply vectors a and b together.
*/
public static double[] multiply(final double[] a, final double[] b) throws Exception {
Jama.Matrix a_ = new Jama.Matrix(a,1);
Jama.Matrix b_ = new Jama.Matrix(b,1);
Jama.Matrix c_ = a_.arrayTimes(b_);
return c_.getArray()[0];
}
代码示例来源:origin: Waikato/meka
/**
* Multiply - multiply vectors a and b together.
*/
public static double[] multiply(final double[] a, final double[] b) throws Exception {
Jama.Matrix a_ = new Jama.Matrix(a,1);
Jama.Matrix b_ = new Jama.Matrix(b,1);
Jama.Matrix c_ = a_.arrayTimes(b_);
return c_.getArray()[0];
}
代码示例来源:origin: openimaj/openimaj
@Override
public Double aggregate(DoubleSynchronisedTimeSeriesCollection series) {
Matrix squarediffs = null;
for (DoubleTimeSeries ds: series.allseries()) {
if(squarediffs == null){
squarediffs = new Matrix(new double[][]{ds.getData()});
}
else{
squarediffs = squarediffs.minus(new Matrix(new double[][]{ds.getData()}));
squarediffs = squarediffs.arrayTimes(squarediffs );
}
}
return MatrixUtils.sum(squarediffs);
}
代码示例来源:origin: cmu-phil/tetrad
/**
* Compute compute test set covariances
*
* @param loghyper column <code>Matrix</code> of hyperparameters
* @param X input dataset
* @param Xstar test set
* @return [K(Xstar,Xstar) K(X,Xstar)]
*/
public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar) {
if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
final double it2 = Math.exp(-2*loghyper.get(0,0));
Matrix A = sumRows(Xstar.arrayTimes(Xstar));
A= addValue(A,1).times(it2);
Matrix B = X.times(Xstar.transpose());
B = addValue(B,1).times(it2);
return new Matrix[]{A,B};
}
代码示例来源:origin: openimaj/openimaj
@Override
protected void mstep(EMGMM gmm, GaussianMixtureModelEM learner, Matrix X, Matrix responsibilities,
Matrix weightedXsum,
double[] norm)
{
final Matrix avgX2uw = responsibilities.transpose().times(X.arrayTimes(X));
for (int i = 0; i < gmm.gaussians.length; i++) {
final Matrix weightedXsumi = new Matrix(new double[][] { weightedXsum.getArray()[i] });
final Matrix avgX2uwi = new Matrix(new double[][] { avgX2uw.getArray()[i] });
final Matrix avgX2 = avgX2uwi.times(norm[i]);
final Matrix mu = ((AbstractMultivariateGaussian) gmm.gaussians[i]).mean;
final Matrix avgMeans2 = MatrixUtils.pow(mu, 2);
final Matrix avgXmeans = mu.arrayTimes(weightedXsumi).times(norm[i]);
final Matrix covar = MatrixUtils.plus(avgX2.minus(avgXmeans.times(2)).plus(avgMeans2),
learner.minCovar);
((DiagonalMultivariateGaussian) gmm.gaussians[i]).variance = covar.getArray()[0];
}
}
},
代码示例来源:origin: openimaj/openimaj
@Override
public Double aggregate(DoubleSynchronisedTimeSeriesCollection series) {
Matrix squarediffs = null;
int size = 0;
for (DoubleTimeSeries ds: series.allseries()) {
if(squarediffs == null){
squarediffs = new Matrix(new double[][]{ds.getData()});
}
else{
squarediffs = squarediffs.minus(new Matrix(new double[][]{ds.getData()}));
squarediffs = squarediffs.arrayTimes(squarediffs );
}
size = ds.size();
}
return MatrixUtils.sum(squarediffs)/size;
}
代码示例来源:origin: openimaj/openimaj
@Override
protected void mstep(EMGMM gmm, GaussianMixtureModelEM learner, Matrix X, Matrix responsibilities,
Matrix weightedXsum,
double[] norm)
{
final Matrix avgX2uw = responsibilities.transpose().times(X.arrayTimes(X));
for (int i = 0; i < gmm.gaussians.length; i++) {
final Matrix weightedXsumi = new Matrix(new double[][] { weightedXsum.getArray()[i] });
final Matrix avgX2uwi = new Matrix(new double[][] { avgX2uw.getArray()[i] });
final Matrix avgX2 = avgX2uwi.times(norm[i]);
final Matrix mu = ((AbstractMultivariateGaussian) gmm.gaussians[i]).mean;
final Matrix avgMeans2 = MatrixUtils.pow(mu, 2);
final Matrix avgXmeans = mu.arrayTimes(weightedXsumi).times(norm[i]);
final Matrix covar = MatrixUtils.plus(avgX2.minus(avgXmeans.times(2)).plus(avgMeans2),
learner.minCovar);
((SphericalMultivariateGaussian) gmm.gaussians[i]).variance = MatrixUtils.sum(covar)
/ X.getColumnDimension();
}
}
},
代码示例来源:origin: cmu-phil/tetrad
/**
* Coompute the derivatives of this <code>CovarianceFunction</code> with respect
* to the hyperparameter with index <code>idx</code>
*
* @param loghyper hyperparameters
* @param X input dataset
* @param index hyperparameter index
* @return <code>Matrix</code> of derivatives
*/
public Matrix computeDerivatives(Matrix loghyper, Matrix X, int index) {
if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
if(index>numParameters()-1)
throw new IllegalArgumentException("Wrong hyperparameters index "+index+" it should be smaller or equal to "+(numParameters()-1));
double ell = Math.exp(loghyper.get(0,0));
double sf2 = Math.exp(2*loghyper.get(1,0));
Matrix tmp = squareDist(X.transpose().times(1/ell));
Matrix A = null;
if(index==0){
A = exp(tmp.times(-0.5)).arrayTimes(tmp).times(sf2);
} else {
A = exp(tmp.times(-0.5)).times(2*sf2);
}
return A;
}
代码示例来源:origin: cmu-phil/tetrad
/**
* Compute compute test set covariances
*
* @param loghyper column <code>Matrix</code> of hyperparameters
* @param X input dataset
* @param Xstar test set
* @return [K(Xstar,Xstar) K(X,Xstar)]
*/
public Matrix[] compute(Matrix loghyper, Matrix X, Matrix Xstar) {
if(X.getColumnDimension()!=D)
throw new IllegalArgumentException("The number of dimensions specified on the covariance function "+D+" must agree with the size of the input vector"+X.getColumnDimension());
if(loghyper.getColumnDimension()!=1 || loghyper.getRowDimension()!=numParameters())
throw new IllegalArgumentException("Wrong number of hyperparameters, "+loghyper.getRowDimension()+" instead of "+numParameters());
final Matrix ell = exp(loghyper.getMatrix(0,D-1,0,0)); // characteristic length scales
Matrix diag = new Matrix(D,D);
for(int i=0; i<D; i++)
diag.set(i,i,1/ell.get(i,0));
X = X.times(diag);
Xstar = Xstar.times(diag);
Matrix A = sumRows(Xstar.arrayTimes(Xstar));
Matrix B = X.times(Xstar.transpose());
return new Matrix[]{A,B};
}
代码示例来源:origin: net.sf.meka/meka
dZ[nW] = MatrixUtils.dsigma(Z[nW]).arrayTimes(E_y);
dZ[i] = MatrixUtils.dsigma(Z[i]).arrayTimes(E);
dZ[i] = new Matrix(MatrixUtils.removeBias(dZ[i].getArray()));
代码示例来源:origin: Waikato/meka
dZ[nW] = MatrixUtils.dsigma(Z[nW]).arrayTimes(E_y);
dZ[i] = MatrixUtils.dsigma(Z[i]).arrayTimes(E);
dZ[i] = new Matrix(MatrixUtils.removeBias(dZ[i].getArray()));
代码示例来源:origin: cmu-phil/tetrad
Matrix col = squareDist(X.getMatrix(0,X.getRowDimension()-1,index,index).transpose().times(1/ell.get(index,0)));
A = K.arrayTimes(col);
} else { // magnitude parameter
A=K.times(2);
代码示例来源:origin: cmu-phil/tetrad
df0.set(i,0,sum(W.arrayTimes(covFunction.computeDerivatives(logtheta, x, i)))/2);
代码示例来源:origin: openimaj/openimaj
Matrix var = MatrixUtils.sumCols(mat.arrayTimes(mat)).times(1./inds.size()).minus(mean.arrayTimes(mean));
代码示例来源:origin: org.openimaj/sandbox
Matrix var = MatrixUtils.sumCols(mat.arrayTimes(mat)).times(1./inds.size()).minus(mean.arrayTimes(mean));
内容来源于网络,如有侵权,请联系作者删除!