本文整理了Java中Jama.Matrix.setMatrix()
方法的一些代码示例,展示了Matrix.setMatrix()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Matrix.setMatrix()
方法的具体详情如下:
包路径:Jama.Matrix
类名称:Matrix
方法名:setMatrix
暂无
代码示例来源:origin: marytts/marytts
public void multipleLinearRegression(Matrix datay, Matrix dataX, boolean interceptTerm) {
b0Term = interceptTerm;
if (interceptTerm) { // first column of X is filled with 1s if b_0 != 0
int row = dataX.getRowDimension();
int col = dataX.getColumnDimension();
Matrix B = new Matrix(row, col + 1);
Matrix ones = new Matrix(row, 1);
for (int i = 0; i < row; i++)
ones.set(i, 0, 1.0);
B.setMatrix(0, row - 1, 0, 0, ones);
B.setMatrix(0, row - 1, 1, col, dataX);
multipleLinearRegression(datay, B);
} else {
multipleLinearRegression(datay, dataX);
}
}
代码示例来源:origin: marytts/marytts
public void multipleLinearRegression(Matrix datay, Matrix dataX, boolean interceptTerm) {
b0Term = interceptTerm;
if (interceptTerm) { // first column of X is filled with 1s if b_0 != 0
int row = dataX.getRowDimension();
int col = dataX.getColumnDimension();
Matrix B = new Matrix(row, col + 1);
Matrix ones = new Matrix(row, 1);
for (int i = 0; i < row; i++)
ones.set(i, 0, 1.0);
B.setMatrix(0, row - 1, 0, 0, ones);
B.setMatrix(0, row - 1, 1, col, dataX);
multipleLinearRegression(datay, B);
} else {
multipleLinearRegression(datay, dataX);
}
}
代码示例来源:origin: marytts/marytts
for (int i = 0; i < row; i++)
ones.set(i, 0, 1.0);
B.setMatrix(0, row - 1, 0, 0, ones);
B.setMatrix(0, row - 1, 1, col, data);
data = B;
代码示例来源:origin: marytts/marytts
for (int i = 0; i < row; i++)
ones.set(i, 0, 1.0);
B.setMatrix(0, row - 1, 0, 0, ones);
B.setMatrix(0, row - 1, 1, col, data);
data = B;
代码示例来源:origin: marytts/marytts
for (int i = 0; i < row; i++)
ones.set(i, 0, 1.0);
B.setMatrix(0, row - 1, 0, 0, ones);
B.setMatrix(0, row - 1, 1, col, A);
B.print(row, 3);
代码示例来源:origin: marytts/marytts
for (int i = 0; i < row; i++)
ones.set(i, 0, 1.0);
B.setMatrix(0, row - 1, 0, 0, ones);
B.setMatrix(0, row - 1, 1, col, A);
B.print(row, 3);
代码示例来源:origin: broadgsa/gatk-protected
public void zeroOutSigma() {
final double[][] zeroSigma = new double[mu.length][mu.length];
for( final double[] row : zeroSigma ) {
Arrays.fill(row, 0);
}
final Matrix tmp = new Matrix(zeroSigma);
sigma.setMatrix(0, mu.length - 1, 0, mu.length - 1, tmp);
}
代码示例来源:origin: net.imglib2/imglib2-realtransform
protected void invert()
{
final Matrix ii = a.inverse();
inverse.a.setMatrix( 0, n - 1, 0, n - 1, ii );
invertT();
}
代码示例来源:origin: broadgsa/gatk-protected
public void initializeRandomSigma( final Random rand ) {
final double[][] randSigma = new double[mu.length][mu.length];
for( int iii = 0; iii < mu.length; iii++ ) {
for( int jjj = iii; jjj < mu.length; jjj++ ) {
randSigma[jjj][iii] = 0.55 + 1.25 * rand.nextDouble();
if( rand.nextBoolean() ) {
randSigma[jjj][iii] *= -1.0;
}
if( iii != jjj ) { randSigma[iii][jjj] = 0.0; } // Sigma is a symmetric, positive-definite matrix created by taking a lower diagonal matrix and multiplying it by its transpose
}
}
Matrix tmp = new Matrix( randSigma );
tmp = tmp.times(tmp.transpose());
sigma.setMatrix(0, mu.length - 1, 0, mu.length - 1, tmp);
}
代码示例来源:origin: broadgsa/gatk-protected
protected GaussianMixtureModel(final List<MultivariateGaussian> gaussians, final double shrinkage, final double dirichletParameter, final double priorCounts ) {
this.gaussians = gaussians;
final int numAnnotations = gaussians.get(0).mu.length;
this.shrinkage = shrinkage;
this.dirichletParameter = dirichletParameter;
this.priorCounts = priorCounts;
for( final MultivariateGaussian gaussian : gaussians ) {
gaussian.hyperParameter_a = priorCounts;
gaussian.hyperParameter_b = shrinkage;
gaussian.hyperParameter_lambda = dirichletParameter;
}
empiricalMu = new double[numAnnotations];
empiricalSigma = new Matrix(numAnnotations, numAnnotations);
isModelReadyForEvaluation = false;
Arrays.fill(empiricalMu, 0.0);
empiricalSigma.setMatrix(0, empiricalMu.length - 1, 0, empiricalMu.length - 1, Matrix.identity(empiricalMu.length, empiricalMu.length).times(200.0).inverse());
}
代码示例来源:origin: openimaj/openimaj
@Override
public Matrix getTransform(){
Matrix m = new Matrix(3,3);
m.setMatrix(0, 1, 0,1,this.transform);
m.set(0, 2, 0);
m.set(1, 2, 0);
m.set(2, 2, 1);
return m;
}
代码示例来源:origin: org.openimaj/image-local-features
@Override
public Matrix getTransform(){
Matrix m = new Matrix(3,3);
m.setMatrix(0, 1, 0,1,this.transform);
m.set(0, 2, 0);
m.set(1, 2, 0);
m.set(2, 2, 1);
return m;
}
代码示例来源:origin: openimaj/openimaj
/**
* Set the matrix, any images processed from this point forward will be
* projected using this matrix
*
* @param matrix
* a 3x3 matrix representing a 2d transform
*/
public void setMatrix(Matrix matrix) {
if (matrix.getRowDimension() == 2) {
final int c = matrix.getColumnDimension() - 1;
currentMatrix = new Matrix(3, 3);
currentMatrix.setMatrix(0, 1, 0, c, matrix);
currentMatrix.set(2, 2, 1);
} else {
this.currentMatrix = matrix;
}
}
代码示例来源:origin: org.openimaj/image-processing
/**
* Set the matrix, any images processed from this point forward will be
* projected using this matrix
*
* @param matrix
* a 3x3 matrix representing a 2d transform
*/
public void setMatrix(Matrix matrix) {
if (matrix.getRowDimension() == 2) {
final int c = matrix.getColumnDimension() - 1;
currentMatrix = new Matrix(3, 3);
currentMatrix.setMatrix(0, 1, 0, c, matrix);
currentMatrix.set(2, 2, 1);
} else {
this.currentMatrix = matrix;
}
}
代码示例来源:origin: net.imglib2/imglib2-realtransform
public AbstractAffineTransform( final Matrix matrix )
{
assert matrix.getRowDimension() == matrix.getColumnDimension() - 1: "The passed affine matrix must be of the format (n-1)*n.";
n = matrix.getRowDimension();
a = new Matrix( n, n );
t = new double[ n ];
tmp = new double[ n ];
ds = new RealPoint[ n ];
a.setMatrix( 0, n - 1, 0, n - 1, matrix );
for ( int r = 0; r < n; ++r )
{
t[ r ] = matrix.get( r, n );
ds[ r ] = new RealPoint( n );
}
updateDs();
}
代码示例来源:origin: openimaj/openimaj
/**
* @param transform
* @return transformed ellipse
*/
public Matrix transformAffineCovar(Matrix transform) {
// Matrix translated =
// transform.times(TransformUtilities.translateMatrix((float)this.x,
// (float)this.y));
// Matrix affineTransform =
// TransformUtilities.homographyToAffine(translated);
// affineTransform = affineTransform.times(1/affineTransform.get(2, 2));
final Matrix affineTransform = TransformUtilities.homographyToAffine(transform, this.x, this.y);
final Matrix affineCovar = EllipseUtilities.ellipseToCovariance(this);
Matrix newTransform = new Matrix(3, 3);
newTransform.setMatrix(0, 1, 0, 1, affineCovar);
newTransform.set(2, 2, 1);
newTransform = affineTransform.times(newTransform).times(affineTransform.transpose());
return newTransform;
}
代码示例来源:origin: openimaj/openimaj
/**
* see {@link UpdateableCholeskyDecomposition#choldowndate(double[][], double[])}
* @param x
* @param b
*/
public void choldowndate(double[] x, boolean b) {
if(b) x = x.clone();
Matrix L = this.getL();
// work is done on an upper triangular matrix
double[][] data = L.transpose().getArray();
choldowndate(data, x);
// Make the output lower triangular again
int Ll = L.getRowDimension();
L.setMatrix(0, Ll-1, 0, Ll-1, new Matrix(data, Ll, Ll).transpose());
}
代码示例来源:origin: openimaj/openimaj
/**
* See {@link #cholupdate(double[][], double[])}
* @param x
* @param copyX copy x, x is used as a workspace
*/
public void cholupdate(double[] x, boolean copyX){
if(copyX){
x = x.clone();
}
Matrix L = this.getL();
// work is done on an upper triangular matrix
double[][] data = L.transpose().getArray();
cholupdate(data, x);
// Make the output lower triangular again
int Ll = L.getRowDimension();
L.setMatrix(0, Ll-1, 0, Ll-1, new Matrix(data, Ll, Ll).transpose());
}
/**
代码示例来源:origin: org.openimaj/FaceTracker
void metricUpgrade(Matrix R) {
assert ((R.getRowDimension() == 3) && (R.getColumnDimension() == 3));
SingularValueDecomposition svd = R.svd();
Matrix X = svd.getU().times(svd.getV().transpose());
Matrix W = Matrix.identity(3, 3);
W.set(2, 2, X.det());
R.setMatrix(0, 3 - 1, 0, 3 - 1,
svd.getU().times(W).times(svd.getV().transpose()));
}
代码示例来源:origin: openimaj/openimaj
void metricUpgrade(Matrix R) {
assert ((R.getRowDimension() == 3) && (R.getColumnDimension() == 3));
SingularValueDecomposition svd = R.svd();
Matrix X = svd.getU().times(svd.getV().transpose());
Matrix W = Matrix.identity(3, 3);
W.set(2, 2, X.det());
R.setMatrix(0, 3 - 1, 0, 3 - 1,
svd.getU().times(W).times(svd.getV().transpose()));
}
内容来源于网络,如有侵权,请联系作者删除!