本文整理了Java中org.ujmp.core.Matrix.pinv()
方法的一些代码示例,展示了Matrix.pinv()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Matrix.pinv()
方法的具体详情如下:
包路径:org.ujmp.core.Matrix
类名称:Matrix
方法名:pinv
暂无
代码示例来源:origin: ujmp/universal-java-matrix-package
public Object call() {
Matrix result = getMatrixObject().getMatrix().pinv();
return result;
}
代码示例来源:origin: ujmp/universal-java-matrix-package
Matrix ytrain = y.deleteRows(Ret.NEW, missingRows);
Matrix xinv = xtrain.pinv();
Matrix b = xinv.mtimes(ytrain);
Matrix bias2 = DenseDoubleMatrix2D.Factory.ones(x.getRowCount(), 1);
代码示例来源:origin: ujmp/universal-java-matrix-package
private static Matrix replaceInColumn(Matrix original, Matrix firstGuess, long column) {
Matrix x = firstGuess.deleteColumns(Ret.NEW, column);
Matrix y = original.selectColumns(Ret.NEW, column);
List<Long> missingRows = new ArrayList<Long>();
for (long i = y.getRowCount(); --i >= 0;) {
double v = y.getAsDouble(i, 0);
if (MathUtil.isNaNOrInfinite(v)) {
missingRows.add(i);
}
}
if (missingRows.isEmpty()) {
return y;
}
Matrix xdel = x.deleteRows(Ret.NEW, missingRows);
DenseDoubleMatrix2D bias1 = DenseDoubleMatrix2D.Factory.ones(xdel.getRowCount(), 1);
Matrix xtrain = Matrix.Factory.horCat(xdel, bias1);
Matrix ytrain = y.deleteRows(Ret.NEW, missingRows);
Matrix xinv = xtrain.pinv();
Matrix b = xinv.mtimes(ytrain);
DenseDoubleMatrix2D bias2 = DenseDoubleMatrix2D.Factory.ones(x.getRowCount(), 1);
Matrix yPredicted = Matrix.Factory.horCat(x, bias2).mtimes(b);
// set non-missing values back to original values
for (int row = 0; row < y.getRowCount(); row++) {
double v = y.getAsDouble(row, 0);
if (!Double.isNaN(v)) {
yPredicted.setAsDouble(v, row, 0);
}
}
return yPredicted;
}
代码示例来源:origin: ujmp/universal-java-matrix-package
Matrix m3 = m1.pinv();
Matrix m4 = m1.ginv();
assertEquals(mclass.toString(), 0.0, ref2.minus(m2).getRMS(), TOLERANCE);
代码示例来源:origin: jdmp/java-data-mining-package
public void trainAll(ListDataSet dataSet) {
featureCount = getFeatureCount(dataSet);
classCount = getClassCount(dataSet);
dimensions = featureCount + classCount;
Matrix x = Matrix.Factory.zeros(dataSet.size(), dimensions);
int i = 0;
for (Sample s : dataSet) {
Matrix input = s.getAsMatrix(getInputLabel()).toColumnVector(Ret.LINK);
for (int c = 0; c < featureCount; c++) {
x.setAsDouble(input.getAsDouble(0, c), i, c);
}
Matrix target = s.getAsMatrix(getTargetLabel()).toColumnVector(Ret.LINK);
for (int c = 0; c < classCount; c++) {
x.setAsDouble(target.getAsDouble(0, c), i, c + featureCount);
}
i++;
}
meanMatrix = x.mean(Ret.NEW, Matrix.ROW, true);
covarianceMatrix = x.cov(Ret.NEW, true, true);
try {
inverse = covarianceMatrix.inv();
factor = 1.0 / Math.sqrt(covarianceMatrix.det() * Math.pow(2.0 * Math.PI, dimensions));
} catch (Exception e) {
inverse = covarianceMatrix.pinv();
factor = 1.0;
}
}
代码示例来源:origin: jdmp/java-data-mining-package
if (sampleCount < featureCount) {
parameters = x.pinv(numberOfPrincipalComponents).mtimes(y);
} else {
final Matrix xt = x.transpose();
parameters = xt.mtimes(x).pinv(numberOfPrincipalComponents).mtimes(xt).mtimes(y);
parameters = x.pinv().mtimes(y);
} else {
final Matrix xt = x.transpose();
parameters = xt.mtimes(x).pinv().mtimes(xt).mtimes(y);
代码示例来源:origin: ujmp/universal-java-matrix-package
Matrix pseudoInverse = dense.pinv();
double determinant = dense.det();
代码示例来源:origin: org.ujmp/ujmp-examples
Matrix pseudoInverse = dense.pinv();
double determinant = dense.det();
代码示例来源:origin: ujmp/universal-java-matrix-package
m1.setAsDouble(1.0, 2, 2);
Matrix m2 = m1.pinv();
内容来源于网络,如有侵权,请联系作者删除!