本文整理了Java中org.ujmp.core.Matrix.mean()
方法的一些代码示例,展示了Matrix.mean()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Matrix.mean()
方法的具体详情如下:
包路径:org.ujmp.core.Matrix
类名称:Matrix
方法名:mean
暂无
代码示例来源:origin: jdmp/java-data-mining-package
public Map<String, Object> calculateObjects(Map<String, Object> input) {
int dimension = defaultDimension;
boolean ignoreNaN = defaultIgnoreNaN;
Map<String, Object> result = new HashMap<String, Object>();
Matrix source = MathUtil.getMatrix(input.get(SOURCE));
Object o2 = input.get(DIMENSION);
if (o2 != null) {
dimension = MathUtil.getInt(o2);
}
Object o3 = input.get(IGNORENAN);
if (o3 != null) {
ignoreNaN = MathUtil.getBoolean(o3);
}
Matrix target = source.mean(Ret.NEW, dimension, ignoreNaN);
result.put(TARGET, target);
return result;
}
代码示例来源:origin: jdmp/java-data-mining-package
public Matrix predictOne(Matrix input) {
List<Matrix> results = new FastArrayList<Matrix>();
for (Regressor learningAlgorithm : learningAlgorithms) {
Matrix result = learningAlgorithm.predictOne(input);
results.add(result);
}
Matrix all = Matrix.Factory.vertCat(results);
Matrix mean = all.mean(Ret.NEW, Matrix.ROW, true);
return mean;
}
代码示例来源:origin: ujmp/universal-java-matrix-package
public Object call() {
Matrix result = getMatrixObject().getMatrix().mean(Ret.NEW, getDimension(), getIgnoreMissing());
return result;
}
代码示例来源:origin: jdmp/java-data-mining-package
public Matrix predictOne(Matrix input) {
List<Sortable<Double, Matrix>> bestResults = new FastArrayList<Sortable<Double, Matrix>>();
for (Sample s : dataSet) {
Matrix reference = s.getAsMatrix(getInputLabel());
double distance = input.euklideanDistanceTo(reference, true);
if (bestResults.size() < k) {
bestResults.add(new Sortable<Double, Matrix>(distance, s
.getAsMatrix(getTargetLabel())));
Collections.sort(bestResults);
} else if (distance < bestResults.get(k - 1).getComparable()) {
bestResults.remove(k - 1);
bestResults.add(new Sortable<Double, Matrix>(distance, s
.getAsMatrix(getTargetLabel())));
Collections.sort(bestResults);
}
}
List<Matrix> results = new FastArrayList<Matrix>();
for (Sortable<Double, Matrix> s : bestResults) {
results.add(s.getObject().toColumnVector(Ret.LINK));
}
Matrix resultMatrix = Matrix.Factory.vertCat(results);
Matrix mean = resultMatrix.mean(Ret.NEW, Matrix.ROW, true);
return mean;
}
}
代码示例来源:origin: ujmp/universal-java-matrix-package
Matrix columnLabels = m.selectRows(Ret.NEW, 0); // extract label
Matrix mean = data.mean(Ret.NEW, Matrix.ROW, true);
mean.setLabel(m.getLabel() + "-" + benchmarkName + "-mean");
mean.setMetaDataDimensionMatrix(Matrix.ROW, columnLabels);
代码示例来源:origin: jdmp/java-data-mining-package
public void trainAll(ListDataSet dataSet) {
featureCount = getFeatureCount(dataSet);
classCount = getClassCount(dataSet);
dimensions = featureCount + classCount;
Matrix x = Matrix.Factory.zeros(dataSet.size(), dimensions);
int i = 0;
for (Sample s : dataSet) {
Matrix input = s.getAsMatrix(getInputLabel()).toColumnVector(Ret.LINK);
for (int c = 0; c < featureCount; c++) {
x.setAsDouble(input.getAsDouble(0, c), i, c);
}
Matrix target = s.getAsMatrix(getTargetLabel()).toColumnVector(Ret.LINK);
for (int c = 0; c < classCount; c++) {
x.setAsDouble(target.getAsDouble(0, c), i, c + featureCount);
}
i++;
}
meanMatrix = x.mean(Ret.NEW, Matrix.ROW, true);
covarianceMatrix = x.cov(Ret.NEW, true, true);
try {
inverse = covarianceMatrix.inv();
factor = 1.0 / Math.sqrt(covarianceMatrix.det() * Math.pow(2.0 * Math.PI, dimensions));
} catch (Exception e) {
inverse = covarianceMatrix.pinv();
factor = 1.0;
}
}
代码示例来源:origin: jdmp/java-data-mining-package
mean = x.mean(Ret.NEW, ROW, true);
代码示例来源:origin: jdmp/java-data-mining-package
dataSet.setMatrix(Variable.FMEASURE, fmeasure);
Matrix fmeasureMacro = fmeasure.mean(Ret.NEW, Matrix.ALL, false);
dataSet.setMatrix(Variable.FMEASUREMACRO, fmeasureMacro);
代码示例来源:origin: jdmp/java-data-mining-package
mean = x.mean(Ret.NEW, ROW, true);
内容来源于网络,如有侵权,请联系作者删除!