本文整理了Java中org.ujmp.core.Matrix.toRowVector()
方法的一些代码示例,展示了Matrix.toRowVector()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Matrix.toRowVector()
方法的具体详情如下:
包路径:org.ujmp.core.Matrix
类名称:Matrix
方法名:toRowVector
暂无
代码示例来源:origin: jdmp/java-data-mining-package
public int getTargetClass() {
return (int) getAsMatrix(TARGET).toRowVector(Ret.NEW).getCoordinatesOfMaximum()[ROW];
}
代码示例来源:origin: jdmp/java-data-mining-package
public int getRecognizedClass() {
return (int) getAsMatrix(PREDICTED).toRowVector(Ret.NEW).getCoordinatesOfMaximum()[ROW];
}
代码示例来源:origin: jdmp/java-data-mining-package
public int getFeatureCount(ListDataSet dataSet) {
return (int) dataSet.iterator().next().getAsMatrix(getInputLabel()).toRowVector(Ret.NEW)
.getRowCount();
}
代码示例来源:origin: jdmp/java-data-mining-package
public int getFeatureCount(ListDataSet dataSet) {
return (int) dataSet.iterator().next().getAsMatrix(getInputLabel()).toRowVector(Ret.NEW)
.getRowCount();
}
代码示例来源:origin: jdmp/java-data-mining-package
public int getFeatureCount(ListDataSet dataSet) {
return (int) dataSet.iterator().next().getAsMatrix(getInputLabel()).toRowVector(Ret.NEW)
.getRowCount();
}
代码示例来源:origin: jdmp/java-data-mining-package
public void trainOne(Matrix input, Matrix sampleWeight, Matrix desiredOutput) {
addDesiredOutputMatrix(desiredOutput.toRowVector(Ret.NEW));
if (sampleWeight == null) {
sampleWeight = Matrix.Factory.linkToValue(1.0);
}
setSampleWeight(sampleWeight.doubleValue());
predictOne(input);
getOutputErrorAlgorithm().calculate();
for (int i = networkLayers.size() - 1; i != -1; i--) {
networkLayers.get(i).calculateBackward();
}
for (int i = networkLayers.size() - 1; i != -1; i--) {
networkLayers.get(i).calculateWeightUpdate();
}
}
代码示例来源:origin: jdmp/java-data-mining-package
public int getClassCount(ListDataSet dataSet) {
return (int) dataSet.get(0).getAsMatrix(getTargetLabel()).toRowVector(Ret.NEW)
.getRowCount();
}
代码示例来源:origin: jdmp/java-data-mining-package
public SampleToInstanceWrapper(Matrix input, Matrix sampleWeight, Matrix targetOutput,
boolean discrete, boolean includeTarget) {
super((int) input.toRowVector(Ret.LINK).getRowCount() + 1);
input = input.toRowVector(Ret.LINK);
if (sampleWeight != null) {
setWeight(sampleWeight.doubleValue());
} else {
setWeight(1.0);
}
for (int i = 0; i < input.getRowCount(); i++) {
if (discrete) {
setValue(i, (int) input.getAsDouble(i, 0));
} else {
setValue(i, input.getAsDouble(i, 0));
}
}
if (includeTarget && targetOutput != null) {
long[] c = targetOutput.toRowVector(Ret.NEW).getCoordinatesOfMaximum();
setValue((int) input.getRowCount(), c[Matrix.ROW]);
}
}
代码示例来源:origin: jdmp/java-data-mining-package
Matrix input = s.getAsMatrix(getInputLabel()).toColumnVector(Ret.NEW);
if (svmType == SVMType.EPSILON_SVR || svmType == SVMType.NU_SVR) {
prob.y[i] = s.getAsMatrix(getTargetLabel()).toRowVector(Ret.NEW).getAsDouble(0, 0);
} else {
int targetClass = (int) s.getAsMatrix(getTargetLabel()).toRowVector(Ret.NEW)
.getCoordinatesOfMaximum()[ROW];
prob.y[i] = targetClass;
代码示例来源:origin: jdmp/java-data-mining-package
Matrix x = MathUtil.getMatrix(input.get(SOURCE2)).toRowVector(Ret.NEW);
代码示例来源:origin: jdmp/java-data-mining-package
public Matrix predictOne(Matrix input) {
input = input.toRowVector(Ret.NEW);
内容来源于网络,如有侵权,请联系作者删除!