本文整理了Java中org.ujmp.core.Matrix.doubleValue()
方法的一些代码示例,展示了Matrix.doubleValue()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Matrix.doubleValue()
方法的具体详情如下:
包路径:org.ujmp.core.Matrix
类名称:Matrix
方法名:doubleValue
暂无
代码示例来源:origin: ujmp/universal-java-matrix-package
public int compareTo(Matrix m) {
double v1 = doubleValue();
double v2 = m.doubleValue();
return new Double(v1).compareTo(v2);
}
代码示例来源:origin: jdmp/java-data-mining-package
public Map<String, Object> calculateObjects(Map<String, Object> input) {
Map<String, Object> result = new HashMap<String, Object>();
Matrix source1 = MathUtil.getMatrix(input.get(SOURCE1));
Matrix source2 = MathUtil.getMatrix(input.get(SOURCE2));
result.put(TARGET,
Matrix.Factory.zeros((long) source1.doubleValue(), (long) source2.doubleValue()));
return result;
}
}
代码示例来源:origin: jdmp/java-data-mining-package
public Map<String, Object> calculateObjects(Map<String, Object> input) {
Map<String, Object> result = new HashMap<String, Object>();
Matrix source1 = MathUtil.getMatrix(input.get(SOURCE1));
Matrix source2 = MathUtil.getMatrix(input.get(SOURCE2));
result.put(TARGET,
Matrix.Factory.rand((long) source1.doubleValue(), (long) source2.doubleValue()));
return result;
}
}
代码示例来源:origin: jdmp/java-data-mining-package
public Map<String, Object> calculateObjects(Map<String, Object> input) {
Map<String, Object> result = new HashMap<String, Object>();
Matrix source1 = MathUtil.getMatrix(input.get(SOURCE1));
Matrix source2 = MathUtil.getMatrix(input.get(SOURCE2));
result.put(TARGET,
Matrix.Factory.ones((long) source1.doubleValue(), (long) source2.doubleValue()));
return result;
}
}
代码示例来源:origin: jdmp/java-data-mining-package
public Map<String, Object> calculateObjects(Map<String, Object> input) {
Map<String, Object> result = new HashMap<String, Object>();
Matrix source1 = MathUtil.getMatrix(input.get(SOURCE1));
Matrix source2 = MathUtil.getMatrix(input.get(SOURCE2));
result.put(TARGET,
Matrix.Factory.randn((long) source1.doubleValue(), (long) source2.doubleValue()));
return result;
}
}
代码示例来源:origin: ujmp/universal-java-matrix-package
public static final double getDouble(final Object o) {
if (o == null) {
return 0.0;
} else if (o instanceof Double) {
return (Double) o;
} else if (o instanceof Date) {
return ((Date) o).getTime();
} else if (o instanceof Matrix) {
return ((Matrix) o).doubleValue();
} else {
if ("true".equalsIgnoreCase(o.toString())) {
return 1.0;
}
if ("false".equalsIgnoreCase(o.toString())) {
return 0.0;
}
try {
return Double.parseDouble(o.toString());
} catch (Exception e) {
}
}
return Double.NaN;
}
代码示例来源:origin: ujmp/universal-java-matrix-package
public double getDouble(String label) throws Exception {
Matrix m = getMatrix(label);
VerifyUtil.verifySingleValue(m);
return m.doubleValue();
}
代码示例来源:origin: ujmp/universal-java-matrix-package
public double getDouble(String label) throws Exception {
Matrix m = getMatrix(label);
VerifyUtil.verifySingleValue(m);
return m.doubleValue();
}
代码示例来源:origin: jdmp/java-data-mining-package
public double getLearningRate() {
return getVariableMap().getMatrix(ETA).doubleValue();
}
代码示例来源:origin: jdmp/java-data-mining-package
public double getDensity(Matrix input) {
Matrix xmean = input.minus(meanMatrix);
Matrix matrix = xmean.mtimes(inverse).mtimes(xmean.transpose());
return factor * Math.exp(-0.5 * matrix.doubleValue());
}
代码示例来源:origin: jdmp/java-data-mining-package
public double getDensityUnscaled(Matrix input) {
Matrix xmean = input.minus(meanMatrix);
Matrix matrix = xmean.mtimes(inverse).mtimes(xmean.transpose());
return Math.exp(-0.5 * matrix.doubleValue());
}
代码示例来源:origin: jdmp/java-data-mining-package
public static double getDensity(Matrix x, Matrix mean, Matrix covariance) {
Matrix xmean = x.minus(mean);
Matrix inverse = covariance.inv();
double f = 1.0 / Math.sqrt(covariance.det() * Math.pow(2.0 * Math.PI, x.getColumnCount()));
Matrix matrix = xmean.mtimes(inverse).mtimes(xmean.transpose());
return f * Math.exp(-0.5 * matrix.doubleValue());
}
代码示例来源:origin: jdmp/java-data-mining-package
public static double getDensityUnscaled(Matrix x, Matrix mean, Matrix covariance) {
Matrix xmean = x.minus(mean);
Matrix inverse = covariance.inv();
Matrix matrix = xmean.mtimes(inverse).mtimes(xmean.transpose());
return Math.exp(-0.5 * matrix.doubleValue());
}
代码示例来源:origin: jdmp/java-data-mining-package
public void trainOne(Matrix input, Matrix sampleWeight, Matrix desiredOutput) {
addDesiredOutputMatrix(desiredOutput.toRowVector(Ret.NEW));
if (sampleWeight == null) {
sampleWeight = Matrix.Factory.linkToValue(1.0);
}
setSampleWeight(sampleWeight.doubleValue());
predictOne(input);
getOutputErrorAlgorithm().calculate();
for (int i = networkLayers.size() - 1; i != -1; i--) {
networkLayers.get(i).calculateBackward();
}
for (int i = networkLayers.size() - 1; i != -1; i--) {
networkLayers.get(i).calculateWeightUpdate();
}
}
代码示例来源:origin: jdmp/java-data-mining-package
private Object getSingleValue(PExpression expression) throws Exception {
Matrix m = MathUtil.getMatrix(getObject(expression));
if (m.isScalar()) {
return m.getAsObject(0, 0);
} else {
return m.doubleValue();
}
}
代码示例来源:origin: jdmp/java-data-mining-package
double eta = MathUtil.getMatrix(matrices.get(ETA)).doubleValue();
Matrix contactDeviation = MathUtil.getMatrix(matrices.get(CONTACTDEVIATION));
double sampleWeight = MathUtil.getMatrix(matrices.get(SAMPLEWEIGHT)).doubleValue();
double missingValueCount = transposedInput.countMissing(Ret.NEW, ALL).doubleValue();
代码示例来源:origin: jdmp/java-data-mining-package
System.out.println("Accuracy: " + allacc.getMeanValue() + "+-" + stdacc.doubleValue());
Matrix stdfm = allfm.std(Ret.NEW, Matrix.ROW, false, true);
System.out.println("F-Measure (macro): " + allfm.getMeanValue() + "+-"
+ stdfm.doubleValue());
Matrix stdsens = allsens.std(Ret.NEW, Matrix.ROW, false, true);
System.out.println("Sensitivity: " + allsens.getMeanValue() + "+-"
+ stdsens.doubleValue());
Matrix stdspec = allspec.std(Ret.NEW, Matrix.ROW, false, true);
System.out.println("Specificity: " + allspec.getMeanValue() + "+-"
+ stdspec.doubleValue());
Matrix stdprec = allprec.std(Ret.NEW, Matrix.ROW, false, true);
System.out.println("Precision: " + allprec.getMeanValue() + "+-"
+ stdprec.doubleValue());
Matrix stdrec = allrec.std(Ret.NEW, Matrix.ROW, false, true);
System.out.println("Recall: " + allrec.getMeanValue() + "+-" + stdrec.doubleValue());
Matrix stdrmse = allrmse.std(Ret.NEW, Matrix.ROW, false, true);
System.out.println("RMSE: " + allrmse.getMeanValue() + "+-" + stdrmse.doubleValue());
} else {
System.out.println("Accuracy: " + allacc.getMeanValue());
代码示例来源:origin: jdmp/java-data-mining-package
public SampleToInstanceWrapper(Matrix input, Matrix sampleWeight, Matrix targetOutput,
boolean discrete, boolean includeTarget) {
super((int) input.toRowVector(Ret.LINK).getRowCount() + 1);
input = input.toRowVector(Ret.LINK);
if (sampleWeight != null) {
setWeight(sampleWeight.doubleValue());
} else {
setWeight(1.0);
}
for (int i = 0; i < input.getRowCount(); i++) {
if (discrete) {
setValue(i, (int) input.getAsDouble(i, 0));
} else {
setValue(i, input.getAsDouble(i, 0));
}
}
if (includeTarget && targetOutput != null) {
long[] c = targetOutput.toRowVector(Ret.NEW).getCoordinatesOfMaximum();
setValue((int) input.getRowCount(), c[Matrix.ROW]);
}
}
代码示例来源:origin: jdmp/java-data-mining-package
Matrix m = s.getAsMatrix("RMSE");
if (m != null) {
double sampleRMSE = m.doubleValue();
sumRMSE += sampleRMSE;
if (sampleRMSE > maxRMSE) {
System.out.println("Iteration: " + iteration + ", RMSE: " + rmse.doubleValue()
+ ", errors: " + errorCount + ", accuracy: " + accuracy.doubleValue());
内容来源于网络,如有侵权,请联系作者删除!